Companies Home Search Profile

Data Science With Python Course Hands-On Data Science

Focused View

15:40:18

153 View
  • 1 - Download and Install Anaconda Windows.mp4
    05:40
  • 1 - anaconda linux installation.zip
  • 1 - anaconda mac os installation.zip
  • 1 - anaconda windows installation.zip
  • 2 - Download and Install Anaconda Ubuntu Linux.mp4
    07:08
  • 3 - Overview Of Jupyter Notebook.mp4
    08:47
  • 3 - jupyter notebook documentation.zip
  • 4 - Notes About Course.mp4
    03:24
  • 5 - Course FAQ.html
  • 6 - Join Online Classroom.html
  • 7 - Introduction Python.mp4
    01:40
  • 7 - Python-Crash-Course.zip
  • 8 - Python Number String Variable.mp4
    11:41
  • 9 - Python List tuples Dictionary Set.mp4
    12:46
  • 10 - Python Ifelse Looping.mp4
    10:47
  • 11 - Python Function Lambda Map.mp4
    13:03
  • 12 - Python Exercise.html
  • 13 - Introduction Numpy Numerica Python.mp4
    03:15
  • 13 - Numpy.zip
  • 14 - Numpy array.mp4
    14:06
  • 15 - Numpy array operations.mp4
    06:14
  • 16 - Indexing Slicing Numpy array.mp4
    10:09
  • 16 - visualize numpy.zip
  • 17 - Numpy Exercise.html
  • 18 - Introduction Pandas.mp4
    02:32
  • 18 - Pandas.zip
  • 19 - Pandas Introduction to Series.mp4
    07:01
  • 20 - Pandas Introduction to Dataframe.mp4
    11:29
  • 21 - Dataframe Index Multiindex.mp4
    08:38
  • 22 - Handling Missing Data dropna fillna.mp4
    07:52
  • 23 - Grouping data.mp4
    10:37
  • 24 - Read Write csv html excel file.mp4
    05:20
  • 25 - Visualization of data with pandas.mp4
    07:27
  • 26 - Introduction.mp4
    02:53
  • 26 - MatPlotLib.zip
  • 27 - Why Visualization.html
  • 28 - MatplotLib Basic plotting Plotting terminology.mp4
    09:40
  • 29 - MatplotLib Subplots.mp4
    04:12
  • 30 - Matplotlib Special plot.mp4
    03:32
  • 31 - Plotly introduction.mp4
    03:01
  • 31 - plotly.zip
  • 32 - Basic plotting plotly.mp4
    08:00
  • 33 - Exercise Extend Basic Plot.html
  • 34 - Plotly scatter and line chart.mp4
    10:27
  • 35 - Plotly Bar chart.mp4
    04:09
  • 36 - Exercise Extend Bar Chart.html
  • 37 - Plotly Bubble chart.mp4
    03:28
  • 38 - Plotly Histogram and Distribution plot.mp4
    11:48
  • 39 - Introduction to Tableau and Installation.mp4
    07:06
  • 40 - Insight 1.mp4
    12:30
  • 40 - countries-of-the-world.csv
  • 41 - Insight 2.mp4
    09:10
  • 42 - Load Data in Tableau.mp4
    04:50
  • 42 - countries-of-the-world.csv
  • 43 - Save Tableau Worksheet.mp4
    03:08
  • 44 - Introduction to Data Continuous and Discrete Data.mp4
    08:56
  • 45 - Nominal and Ordinal Data.mp4
    08:34
  • 46 - Importing-Data.zip
  • 46 - Introduction.mp4
    01:47
  • 47 - Reading Plain text file.mp4
    04:39
  • 47 - news.zip
  • 48 - Reading csv file.mp4
    07:24
  • 48 - mnist.csv
  • 48 - titanic.csv
  • 49 - ExcelTest.xlsx
  • 49 - MatlabTest.zip
  • 49 - Reading Excel and m Matlab file.mp4
    04:05
  • 50 - Read Sqlite Database.mp4
    03:52
  • 50 - SqliteTestDb.zip
  • 51 - Fetch Data from Remote file.mp4
    06:50
  • 52 - Fetch Data from Facebook API.mp4
    09:09
  • 53 - Data-Preprocesing.zip
  • 53 - Introduction.mp4
    02:06
  • 54 - Data.csv
  • 54 - Reading Data.mp4
    05:17
  • 55 - Handling Missing Data.mp4
    08:44
  • 56 - Categorical Data.mp4
    10:59
  • 57 - Splitting Data in Training and Testing Set.mp4
    03:49
  • 58 - Normalize Data.mp4
    07:38
  • 59 - Introduction Web Scraping.mp4
    02:03
  • 59 - Web-Scraping.zip
  • 60 - What is Web Scraping.mp4
    06:59
  • 61 - Web Scraping Process.mp4
    06:15
  • 62 - Search Element by TagName and TagByClass.mp4
    08:50
  • 63 - How to use developer tools in browser.mp4
    09:53
  • 64 - Practical Activity.html
  • 65 - EDA of pima indian diabetes dataset.mp4
    11:44
  • 66 - Visualize pima indian diabetes dataset.mp4
    09:34
  • 67 - Introduction.mp4
    03:09
  • 68 - Rescale data Standardize data.mp4
    07:40
  • 69 - Normalize Data Binarize Data.mp4
    06:02
  • 70 - Practical Activity.html
  • 71 - What is Machine Learning In Layman term.mp4
    03:24
  • 71 - towards-ML.zip
  • 72 - Traditional system of computing vs Machine Learning.mp4
    04:31
  • 73 - Formal Definition of Machine Learning.mp4
    06:59
  • 74 - How Machine Learning system works.mp4
    04:41
  • 75 - Different Types of Machine Learning system Supervised vs Unsupervised learning.mp4
    05:01
  • 76 - Parametric vs Nonparametric machine learning system.mp4
    06:37
  • 77 - Machine Learning system design and Scikit learn.mp4
    07:43
  • 78 - Machine Learning application.mp4
    06:00
  • 79 - Ask yourself to learn any machine learning algorithm.mp4
    04:58
  • 80 - Introduction to feature selection.mp4
    04:14
  • 81 - Univariate feature selection.mp4
    06:47
  • 82 - Recursive feature elimination.mp4
    05:28
  • 83 - Principal component analysis.mp4
    06:33
  • 84 - Remove feature with low variance.mp4
    05:10
  • 85 - Tree based method for feature selection.mp4
    05:20
  • 86 - Section introduction.mp4
    02:19
  • 87 - KNN algorithm Intitution.mp4
    07:36
  • 88 - Choose K and distance metric.mp4
    05:37
  • 89 - About KNN algorithm.mp4
    02:45
  • 90 - Implement KNN from scratch.html
  • 90 - KNN.zip
  • 91 - Introduction.mp4
    06:43
  • 92 - Python Implementation Step 1.mp4
    11:57
  • 93 - Python Implementation Step 2.mp4
    13:07
  • 94 - Python Implementation Step 3.mp4
    07:10
  • 95 - Introduction.mp4
    06:42
  • 96 - Python Implementation Step 1.mp4
    11:26
  • 97 - Python Implementation Step 2.mp4
    08:41
  • 98 - Introduction.html
  • 99 - What is Apache Spark.mp4
    07:03
  • 100 - Introduction to Installation.mp4
    01:34
  • 101 - Installation Part 1 and 2.mp4
    10:36
  • 102 - Installation Part 3 and 4.mp4
    09:43
  • 103 - Installation Instruction Windows.html
  • 104 - Spark Session.mp4
    02:38
  • 105 - Import JSON data into Dataframe.mp4
    04:52
  • 105 - student.zip
  • 106 - What next.html
  • 107 - Create Python virtual environment 1.mp4
    03:54
  • 108 - Create Python virtual environment 2.mp4
    16:10
  • 109 - Conda Command I.mp4
    08:25
  • 110 - Conda Command II.mp4
    06:06
  • 111 - Python Numbers & Math operators.mp4
    08:31
  • 112 - Python Variables and Datatypes.mp4
    16:12
  • 113 - Python Dynamic Typing in Python.mp4
    02:44
  • 114 - Python String.mp4
    10:48
  • 115 - Python Boolean variable and conditional logic.mp4
    07:28
  • 116 - Python Looping in Python.mp4
    12:22
  • 117 - Data Science in Cloud 1.mp4
    06:54
  • 118 - Data Science in Cloud 2 Microsoft Azure.mp4
    21:16
  • 119 - Install tensorflow Keras and NLTK on Azure VM.mp4
    04:27
  • 120 - Data Science as Interdisciplinary field.mp4
    05:46
  • 121 - Statistics & Probability.mp4
    08:08
  • 122 - Mathematics.mp4
    06:45
  • 123 - Visualization.mp4
    06:21
  • 124 - Database and Computer Science.mp4
    08:25
  • 125 - Big data Technology.mp4
    06:33
  • 126 - Machine Learning.mp4
    07:58
  • 127 - Deep Learning.mp4
    07:55
  • 128 - Natural language Processing.mp4
    09:16
  • 129 - Welcome to Mathematics Prerequisite.html
  • 130 - Permutations.mp4
    10:27
  • 130 - Permutation-and-Combination.pptx
  • 130 - Probability.pptx
  • 131 - Permutations Exercise.mp4
    04:06
  • 132 - Combinations.mp4
    04:17
  • 133 - Introduction to Probability.mp4
    05:42
  • 134 - Union Intersection of complement of event.mp4
    11:00
  • 135 - Independent and dependent event.mp4
    06:18
  • 136 - Probability interview question 1.html
  • 137 - Probability interview answer 1.mp4
    03:16
  • 138 - Probability interview question 2.html
  • 139 - Probability interview answer 2.mp4
    06:36
  • 140 - Probability interview question 3.html
  • 141 - Probability interview answer 3.mp4
    02:38
  • 142 - Probability interview question 4.html
  • 143 - Probability interview answer 4.mp4
    05:11
  • 144 - Probability interview question 5.html
  • 145 - Probability interview answer 5.mp4
    08:05
  • 146 - Measure of central tendency.mp4
    06:03
  • 147 - Mean vs Median.mp4
    02:18
  • 148 - Measure of Dispersion.mp4
    06:24
  • 149 - Quartiles and Interquartile range.mp4
    08:32
  • 150 - Correlation vs Causality.mp4
    05:21
  • 151 - Covariance and Pearson correlation.mp4
    05:31
  • 152 - Measure Statistical Parameter with Microsoft Excel.mp4
    08:46
  • 152 - Measure-Statistics-with-Excel.xlsx
  • 153 - Discount for other courses.html
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 133
    • duration 15:40:18
    • English subtitles has
    • Release Date 2023/04/03