Companies Home Search Profile

Data Science Foundations: Python Scientific Stack

Focused View

Miki Tebeka

2:21:37

103 View
  • 001. The Python scientific stack.mp4
    00:50
  • 002. What you should know.mp4
    00:20
  • 003. Setting up.mp4
    00:30
  • 004. Working with VS Code.mp4
    01:48
  • 005. Using code cells.mp4
    01:43
  • 006. Extensions to Python language.mp4
    01:14
  • 007. Understanding markdown cells.mp4
    01:29
  • 008. NumPy overview.mp4
    01:40
  • 009. NumPy arrays.mp4
    03:06
  • 010. Slicing.mp4
    01:31
  • 011. Boolean indexing.mp4
    03:00
  • 012. Understanding broadcasting.mp4
    01:41
  • 013. Understanding array operations.mp4
    02:26
  • 014. Understanding ufuncs.mp4
    02:19
  • 015. Challenge Working with an image.mp4
    01:06
  • 016. Solution Working with an image.mp4
    00:48
  • 017. pandas overview.mp4
    01:19
  • 018. Loading CSV files.mp4
    02:54
  • 019. Parsing time.mp4
    01:46
  • 020. Accessing rows and columns.mp4
    03:47
  • 021. Calculating speed.mp4
    03:11
  • 022. Displaying speed box plot.mp4
    02:31
  • 023. Challenge Taxi data mean speed.mp4
    00:23
  • 024. Solution Taxi data mean speed.mp4
    00:51
  • 025. Introduction to Python packages.mp4
    02:46
  • 026. Using environments.mp4
    02:10
  • 027. Managing dependencies.mp4
    01:25
  • 028. Challenge Creating requirements.mp4
    00:22
  • 029. Solution Creating requirements.mp4
    00:20
  • 030. Creating an initial map.mp4
    01:29
  • 031. Drawing a track on a map.mp4
    02:41
  • 032. Using geo data with Shapely.mp4
    03:58
  • 033. Challenge Drawing the running track.mp4
    00:16
  • 034. Solution Drawing the running track.mp4
    00:46
  • 035. Examining data.mp4
    01:30
  • 036. Loading data from CSV files.mp4
    01:31
  • 037. Working with categorical data.mp4
    02:28
  • 038. Working with data Hourly trip rides.mp4
    03:57
  • 039. Working with data Rides per hour.mp4
    03:15
  • 040. Working with data Weather data.mp4
    03:03
  • 041. Challenge Graphing taxi data.mp4
    00:38
  • 042. Solution Graphing taxi data.mp4
    02:26
  • 043. scikit-learn introduction.mp4
    01:13
  • 044. Regression.mp4
    05:21
  • 045. Understanding train test split.mp4
    01:58
  • 046. Preprocessing data.mp4
    02:57
  • 047. Composing pipelines.mp4
    01:47
  • 048. Saving and loading models.mp4
    01:34
  • 049. Challenge Hand-written digits.mp4
    01:12
  • 050. Solution Hand-written digits.mp4
    01:10
  • 051. Matplotlib overview.mp4
    00:58
  • 052. Using styles.mp4
    01:30
  • 053. Customizing pandas output.mp4
    02:58
  • 054. pandas plotting.mp4
    02:20
  • 055. Using Matplotlib with pandas.mp4
    01:58
  • 056. Interactive plots.mp4
    01:44
  • 057. Other plotting packages.mp4
    02:52
  • 058. Challenge Stocking data bar charts.mp4
    00:27
  • 059. Solution Stocking data bar charts.mp4
    01:26
  • 060. Other packages overview.mp4
    01:07
  • 061. Going faster with Numba.mp4
    02:15
  • 062. Understanding deep learning.mp4
    04:59
  • 063. Working with image processing.mp4
    02:49
  • 064. Understand NLP.mp4
    03:20
  • 065. Working with bigger data.mp4
    04:16
  • 066. Development process overview.mp4
    00:45
  • 067. Understanding source control.mp4
    04:38
  • 068. Code review.mp4
    02:11
  • 069. Testing overview.mp4
    02:33
  • 070. Testing example.mp4
    01:42
  • 071. Next steps.mp4
    00:23
  • Description


    Join instructor Miki Tebeka as he dives into the Python scientific stack and shows you how to use it to solve problems. Miki covers the major packages used throughout the data science process: numpy, pandas, matplotlib, scikit-learn, and others. He also guides you through how to load data, analyze data, run models, and display results.

    This course is integrated with GitHub Codespaces, an instant cloud developer environment that offers all the functionality of your favorite IDE without the need for any local machine setup. With GitHub Codespaces, you can get hands-on practice from any machine, at any time—all while using a tool that you’ll likely encounter in the workplace. Check out the “Using GitHub Codespaces with this course” video to learn how to get started.

    More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Teaching effective hands-on workshops all of the world. Consultant solving hard problem with the right tools (Java and C++ are *not* the right tools ;). Book author, LinkedIn learning Author, open source contributor and convention organizer, meetup co host and coding for fun in my spare time. Specialties: Python & Scientific Python (Expert), Go (Expert), C/C++, Clojure, JavaScript, bash, ... Information retrieval - tokenization, summarization, clustering, search ... Concurrency - Multi process, multi threaded, Hadoop ... Web development - REST APIs, jQuery, JavaScript, CSS, (X)HTML Assemblers, Linkers, Debugger, Simulators SCM tools (git, Mercurial, Perforce, subversion, CVS, ClearCase) Linux, OS X and Windows Functional Programming, OOD, OOP Databases - SQL (BigQuery, PostgreSQL, MySQL, Oracle) and NoSQL (Redis, MongoDB, CouchDB)
    LinkedIn Learning is an American online learning provider. It provides video courses taught by industry experts in software, creative, and business skills. It is a subsidiary of LinkedIn. All the courses on LinkedIn fall into four categories: Business, Creative, Technology and Certifications. It was founded in 1995 by Lynda Weinman as Lynda.com before being acquired by LinkedIn in 2015. Microsoft acquired LinkedIn in December 2016.
    • language english
    • Training sessions 71
    • duration 2:21:37
    • Release Date 2023/01/04