Companies Home Search Profile

Data Science and Machine Learning with Python Masterclass

Focused View

21:18:43

10 View
  • 01-data science and machine learning course intro.mp4
    03:19
  • 02-data science and machine learning marketplace.mp4
    06:55
  • 03-data science job opportunities.mp4
    04:24
  • 04-data science job roles.mp4
    10:23
  • 05-what is a data scientist.mp4
    17:00
  • 06-how to get a data science job.mp4
    18:39
  • 07-data science projects overview.mp4
    11:52
  • 08-why we use python.mp4
    03:14
  • 09-what is data science.mp4
    13:24
  • 10-what is machine learning.mp4
    14:22
  • 11-machine learning concepts and algorithms.mp4
    14:42
  • 12-machine learning vs deep learning.mp4
    11:09
  • 13-what is deep learning.mp4
    09:44
  • 14-what is python programming.mp4
    06:03
  • 15-why python for data science.mp4
    04:35
  • 16-what is jupyter.mp4
    03:54
  • 17-what is google colab.mp4
    03:27
  • 18-getting started with colab.mp4
    09:07
  • 19-python variables and booleans .mp4
    11:47
  • 20-python operators.mp4
    25:26
  • 21-python numbers and booleans.mp4
    07:47
  • 22-python strings.mp4
    13:12
  • 23-python conditional statements.mp4
    13:53
  • 24-python for loops and while loops.mp4
    08:07
  • 25-python lists.mp4
    05:10
  • 26-more about python lists.mp4
    15:08
  • 27-python tuples.mp4
    11:25
  • 28-python dictionaries.mp4
    20:19
  • 29-python sets.mp4
    09:41
  • 30-compound data types.mp4
    12:58
  • 31-python object oriented programming.mp4
    18:47
  • 32-intro to statistics.mp4
    07:11
  • 33-descriptive statistics.mp4
    06:35
  • 34-measure of variability.mp4
    12:19
  • 35-measure of variability continued.mp4
    09:35
  • 36-measures of variable relationship.mp4
    07:37
  • 37-inferential statistics.mp4
    15:18
  • 38-measures of asymmetry.mp4
    01:57
  • 39-sampling distribution.mp4
    07:34
  • 40-what exactly probability.mp4
    03:44
  • 41-expected values.mp4
    02:38
  • 42-relative frequency.mp4
    05:15
  • 43-hypothesis testing overview.mp4
    09:09
  • 44-numpy array data types.mp4
    12:58
  • 45-numpy arrays.mp4
    08:22
  • 46-numpy array basics.mp4
    11:36
  • 47-numpy array indexing.mp4
    09:10
  • 48-numpy array computations.mp4
    05:53
  • 49-broadcasting.mp4
    04:32
  • 50-intro to pandas.mp4
    15:52
  • 51-pandas continued.mp4
    18:05
  • 52-data visualization overview.mp4
    24:49
  • 53-different data visualization libraries.mp4
    12:48
  • 54-python data visualization implementation.mp4
    08:27
  • 55-intro to machine learning.mp4
    26:03
  • 56-exploratory data analysis.mp4
    13:06
  • 57-feature scaling.mp4
    07:41
  • 58-data cleaning.mp4
    07:43
  • 59-feature engineering.mp4
    06:11
  • 60-linear regression intro.mp4
    08:17
  • 61-gradient descent.mp4
    05:59
  • 62-linear regression and correlation methods.mp4
    26:33
  • 63-linear regression implementation.mp4
    05:06
  • 64-logistic regression.mp4
    03:22
  • 65-knn overview.mp4
    03:01
  • 66-parametic vs non-parametic models.mp4
    03:28
  • 67-eda on iris dataset.mp4
    22:08
  • 68-knn intuition.mp4
    02:16
  • 69-implement the knn algorithm from scratch.mp4
    11:45
  • 70-compare the result with sklearn library.mp4
    03:47
  • 71-knn hyperparameter tuning using the cross-validation.mp4
    10:47
  • 72-the decision boundary visualization.mp4
    04:55
  • 73-knn-manhattan vs euclidean distance.mp4
    11:21
  • 74-knn scaling.mp4
    06:01
  • 75-curse of dimensionality.mp4
    08:09
  • 76-knn use cases.mp4
    03:32
  • 77-knn pros and cons.mp4
    05:32
  • 78-decision trees section overview.mp4
    04:11
  • 79-eda on adult dataset.mp4
    16:53
  • 80-what is entropy and info gain.mp4
    21:50
  • 81-the decisions tree id3 algorithm part 1.mp4
    11:33
  • 82-the decisions tree id3 algorithm part 2.mp4
    07:35
  • 83-the decisions tree id3 algorithm part 3.mp4
    04:07
  • 84-putting everything together.mp4
    21:23
  • 85-evaluating our id3 implementation.mp4
    16:53
  • 86-compare with sklearn implementation.mp4
    08:52
  • 87-visualization the tree.mp4
    10:15
  • 88-plot the features importance.mp4
    05:51
  • 89-decision tree hyper-parameters.mp4
    11:39
  • 90-pruning.mp4
    17:11
  • 91-optional gain ration.mp4
    02:49
  • 92-what is ensemble learning.mp4
    13:06
  • 93-what is bootstrap sampling.mp4
    08:25
  • 94-what is bagging.mp4
    05:20
  • 95-out-of-bag error (oob error).mp4
    07:47
  • 96-implementing random forests from scratch part 1.mp4
    22:34
  • 97-implementing random forests from scratch part 2.mp4
    06:10
  • 98-random forests hyper-parameters.mp4
    04:23
  • 99-what is boosting.mp4
    04:41
  • 100-adaboost part 1.mp4
    04:10
  • 101-adaboost part 2.mp4
    14:33
  • 102-svm outline.mp4
    05:16
  • 103-svm intuition.mp4
    11:39
  • 104-hard vs soft margins.mp4
    13:25
  • 105-c hyper-parameter.mp4
    04:17
  • 106-kernel trick.mp4
    12:18
  • 107-svm-kernel types.mp4
    18:13
  • 108-svm with linear dataset (iris).mp4
    13:35
  • 109-svm with non-linear dataset.mp4
    12:50
  • 110-svm with regression.mp4
    05:51
  • 111-project voice gender recognition using svm.mp4
    04:26
  • 112-unsupervised machine learning intro.mp4
    20:22
  • 113-unsupervised machine learning continued.mp4
    20:48
  • 114-data standardization.mp4
    19:05
  • 115-pca section overview.mp4
    05:12
  • 116-what is pca.mp4
    09:37
  • 117-covariance matrix vs svd.mp4
    04:58
  • 118-image compression scratch.mp4
    27:00
  • 119-data preprocessing scratch.mp4
    14:31
  • 120-creating a data science resume.mp4
    06:45
  • 121-data science cover letter.mp4
    03:33
  • 122-how to contact recruiters.mp4
    04:20
  • 123-getting started with freelancing.mp4
    04:13
  • 124-top freelance websites.mp4
    05:35
  • 125-personal branding.mp4
    04:02
  • 126-networking dos and donts.mp4
    03:45
  • 127-importance of a website.mp4
    02:56
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Skillshare is an online learning community based in the United States for people who want to learn from educational videos. The courses, which are not accredited, are only available through paid subscription.
    • language english
    • Training sessions 127
    • duration 21:18:43
    • Release Date 2024/03/06