Data Science and Machine Learning with Python Masterclass
Focused View
21:18:43
10 View
01-data science and machine learning course intro.mp4
03:19
02-data science and machine learning marketplace.mp4
06:55
03-data science job opportunities.mp4
04:24
04-data science job roles.mp4
10:23
05-what is a data scientist.mp4
17:00
06-how to get a data science job.mp4
18:39
07-data science projects overview.mp4
11:52
08-why we use python.mp4
03:14
09-what is data science.mp4
13:24
10-what is machine learning.mp4
14:22
11-machine learning concepts and algorithms.mp4
14:42
12-machine learning vs deep learning.mp4
11:09
13-what is deep learning.mp4
09:44
14-what is python programming.mp4
06:03
15-why python for data science.mp4
04:35
16-what is jupyter.mp4
03:54
17-what is google colab.mp4
03:27
18-getting started with colab.mp4
09:07
19-python variables and booleans .mp4
11:47
20-python operators.mp4
25:26
21-python numbers and booleans.mp4
07:47
22-python strings.mp4
13:12
23-python conditional statements.mp4
13:53
24-python for loops and while loops.mp4
08:07
25-python lists.mp4
05:10
26-more about python lists.mp4
15:08
27-python tuples.mp4
11:25
28-python dictionaries.mp4
20:19
29-python sets.mp4
09:41
30-compound data types.mp4
12:58
31-python object oriented programming.mp4
18:47
32-intro to statistics.mp4
07:11
33-descriptive statistics.mp4
06:35
34-measure of variability.mp4
12:19
35-measure of variability continued.mp4
09:35
36-measures of variable relationship.mp4
07:37
37-inferential statistics.mp4
15:18
38-measures of asymmetry.mp4
01:57
39-sampling distribution.mp4
07:34
40-what exactly probability.mp4
03:44
41-expected values.mp4
02:38
42-relative frequency.mp4
05:15
43-hypothesis testing overview.mp4
09:09
44-numpy array data types.mp4
12:58
45-numpy arrays.mp4
08:22
46-numpy array basics.mp4
11:36
47-numpy array indexing.mp4
09:10
48-numpy array computations.mp4
05:53
49-broadcasting.mp4
04:32
50-intro to pandas.mp4
15:52
51-pandas continued.mp4
18:05
52-data visualization overview.mp4
24:49
53-different data visualization libraries.mp4
12:48
54-python data visualization implementation.mp4
08:27
55-intro to machine learning.mp4
26:03
56-exploratory data analysis.mp4
13:06
57-feature scaling.mp4
07:41
58-data cleaning.mp4
07:43
59-feature engineering.mp4
06:11
60-linear regression intro.mp4
08:17
61-gradient descent.mp4
05:59
62-linear regression and correlation methods.mp4
26:33
63-linear regression implementation.mp4
05:06
64-logistic regression.mp4
03:22
65-knn overview.mp4
03:01
66-parametic vs non-parametic models.mp4
03:28
67-eda on iris dataset.mp4
22:08
68-knn intuition.mp4
02:16
69-implement the knn algorithm from scratch.mp4
11:45
70-compare the result with sklearn library.mp4
03:47
71-knn hyperparameter tuning using the cross-validation.mp4
10:47
72-the decision boundary visualization.mp4
04:55
73-knn-manhattan vs euclidean distance.mp4
11:21
74-knn scaling.mp4
06:01
75-curse of dimensionality.mp4
08:09
76-knn use cases.mp4
03:32
77-knn pros and cons.mp4
05:32
78-decision trees section overview.mp4
04:11
79-eda on adult dataset.mp4
16:53
80-what is entropy and info gain.mp4
21:50
81-the decisions tree id3 algorithm part 1.mp4
11:33
82-the decisions tree id3 algorithm part 2.mp4
07:35
83-the decisions tree id3 algorithm part 3.mp4
04:07
84-putting everything together.mp4
21:23
85-evaluating our id3 implementation.mp4
16:53
86-compare with sklearn implementation.mp4
08:52
87-visualization the tree.mp4
10:15
88-plot the features importance.mp4
05:51
89-decision tree hyper-parameters.mp4
11:39
90-pruning.mp4
17:11
91-optional gain ration.mp4
02:49
92-what is ensemble learning.mp4
13:06
93-what is bootstrap sampling.mp4
08:25
94-what is bagging.mp4
05:20
95-out-of-bag error (oob error).mp4
07:47
96-implementing random forests from scratch part 1.mp4
22:34
97-implementing random forests from scratch part 2.mp4
06:10
98-random forests hyper-parameters.mp4
04:23
99-what is boosting.mp4
04:41
100-adaboost part 1.mp4
04:10
101-adaboost part 2.mp4
14:33
102-svm outline.mp4
05:16
103-svm intuition.mp4
11:39
104-hard vs soft margins.mp4
13:25
105-c hyper-parameter.mp4
04:17
106-kernel trick.mp4
12:18
107-svm-kernel types.mp4
18:13
108-svm with linear dataset (iris).mp4
13:35
109-svm with non-linear dataset.mp4
12:50
110-svm with regression.mp4
05:51
111-project voice gender recognition using svm.mp4
04:26
112-unsupervised machine learning intro.mp4
20:22
113-unsupervised machine learning continued.mp4
20:48
114-data standardization.mp4
19:05
115-pca section overview.mp4
05:12
116-what is pca.mp4
09:37
117-covariance matrix vs svd.mp4
04:58
118-image compression scratch.mp4
27:00
119-data preprocessing scratch.mp4
14:31
120-creating a data science resume.mp4
06:45
121-data science cover letter.mp4
03:33
122-how to contact recruiters.mp4
04:20
123-getting started with freelancing.mp4
04:13
124-top freelance websites.mp4
05:35
125-personal branding.mp4
04:02
126-networking dos and donts.mp4
03:45
127-importance of a website.mp4
02:56
More details
User Reviews
Rating
average 0
Focused display
Category

SkillShare
View courses SkillShareSkillshare is an online learning community based in the United States for people who want to learn from educational videos. The courses, which are not accredited, are only available through paid subscription.
- language english
- Training sessions 127
- duration 21:18:43
- Release Date 2024/03/06