Companies Home Search Profile

Data Preparation (Import and Cleaning) for Python

Focused View

Chris Behrens

1:56:41

55 View
  • 001 Course Introduction.mp4
    01:18
  • 002 The Python Packages Used in This Course.mp4
    04:08
  • 002 The SciPy Stack.txt
  • 002 pandas.txt
  • 002 pandas-profiling.html
  • 002 scikit-learn.html
  • 003 Introduction to Python Development.txt
  • 003 Prerequisite and Related Courses.mp4
    00:54
  • 003 Using Pythons Math Science and Engineering Libraries.txt
  • 003 Using Python for Data Management and Reporting.txt
  • 001 DB-API PEP 249.txt
  • 001 Section Introduction The Python DB-API.mp4
    02:56
  • 002 Relational Databases.mp4
    09:45
  • 003 MongoDB Python module.txt
  • 003 NoSQL (Non-Relational) Databases.mp4
    10:13
  • 003 Redis Python module.txt
  • 004 Embedded Databases.mp4
    04:20
  • 005 Section Recap Database Access.mp4
    02:12
  • 001 Section Introduction Why Data Visualization.mp4
    01:35
  • 002 Python Documentation.html
  • 002 What Kind of Data Can Python Read.mp4
    04:01
  • 002 data.txt
  • 003 Reading and Writing Tabular Data.mp4
    03:21
  • 003 data.txt
  • 004 Calculating Summary Statistics.mp4
    06:41
  • 004 data.txt
  • 005 Course Introduction to Jupyter Notebooks.txt
  • 005 Data Profiling.mp4
    10:25
  • 005 data.txt
  • 005 pandas profiling API Documentation Advanced Usage.html
  • 006 Section Recap Data Visualization.mp4
    02:24
  • 001 Section Introduction Making Your Data Sparkle and Shine.mp4
    01:33
  • 002 Missing and Invalid Data.mp4
    06:24
  • 002 missing-data.txt
  • 003 Outlying Data.mp4
    06:41
  • 003 data.txt
  • 004 String Processing.mp4
    05:40
  • 005 Section Recap Data Cleansing.mp4
    01:12
  • 001 Section Introduction What Is the sklearn.preprocessing Package.mp4
    02:12
  • 002 Sample Dataset.txt
  • 002 Standardizing Your Dataset.mp4
    04:10
  • 003 Non-Linear Transformation.mp4
    04:57
  • 003 Sample Data.txt
  • 004 Normalization and Discretization.mp4
    04:06
  • 004 Sample Data.txt
  • 005 Categorical Features.mp4
    03:19
  • 005 Sample Data.txt
  • 006 Polynomial Features and Custom Transformers.mp4
    03:54
  • 006 Sample Data.txt
  • 007 Section Recap Preprocessing Data for Machine Learning.mp4
    01:38
  • 001 Python Pitfalls.mp4
    05:10
  • 001 Sample Data.txt
  • 002 Course Summary.mp4
    01:05
  • 003 Conclusion and Whats Next.mp4
    00:27
  • Description


    This course explores the tools available in the Python language for data preparation.

    What You'll Learn?


      Python can be a powerful tool for data preparation. In this course, we will quickly cover how to connect to various database types. Then, we will jump into using the pandas Python package for data preparation. We will look at examples of cleansing missing and outlying data as well as data visualizations and exploration. In addition to the pandas package, we will also look at preprocessing data for machine learning using the scikit-learn Python package. Before beginning this course, you should have a strong knowledge of Python and data approaches. Check out the **Prerequisite and Related Courses** lesson in the Introduction section for a starting point.

    More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Chris Behrens
    Chris Behrens
    Instructor's Courses
    A Cloud Guru is an online training platform for people interested in Information Technology. Most of the courses offered prepare students to take certification exams for the three major cloud providers.
    • language english
    • Training sessions 29
    • duration 1:56:41
    • Release Date 2023/12/10