Companies Home Search Profile

Data Analytics using R programming

Focused View

Vignesh Muthuvelan

13:56:09

10 View
  • 1. Introduction.html
  • 2. Prerequisites.html
  • 1. What is Data.mp4
    02:50
  • 2. Importance of Data.mp4
    03:35
  • 3. Type of Data - Categorical.mp4
    03:46
  • 4. Type of Data - Numerical.mp4
    02:10
  • 5. Analytics and Analysis.mp4
    02:26
  • 6. Data Analytics.mp4
    05:39
  • 7. Data Analysis.mp4
    02:04
  • 8. Classification of Data Analytics.mp4
    09:57
  • 9.1 1. Data Analytics Introduction.pptx
  • 9. Process.mp4
    03:12
  • 1. Introduction to R.mp4
    02:40
  • 2. Benefits of R.mp4
    02:58
  • 1. install R in Ubuntu GUI.mp4
    04:57
  • 2. install R in Ubuntu terminal.mp4
    02:57
  • 3. R studio GUI overview.mp4
    04:35
  • 4. How to create and run R file in GUI.mp4
    03:03
  • 5. How to save and run R file in Terminal.mp4
    04:52
  • 6. Rdata and Rhistory.mp4
    03:42
  • 1. Variable in R.mp4
    04:17
  • 2. DataTypes in R.mp4
    05:06
  • 3. Print vs Cat function in R.mp4
    03:24
  • 4. ls,rm function in R.mp4
    00:54
  • 5. Rules to create variable in R.mp4
    04:43
  • 6. Special keywords in R.mp4
    01:17
  • 7. Different datatypes in R.mp4
    02:17
  • 8. Vectorization in R.mp4
    05:44
  • 9. Implicit Cohesion.mp4
    10:55
  • 10.1 first pro.zip
  • 10. ls function in detail.mp4
    10:55
  • 1. Operators in R.mp4
    01:15
  • 2. Arithmetic Operators.mp4
    07:02
  • 3. Relational Operators.mp4
    03:06
  • 4. Logical Operators.mp4
    04:17
  • 5. Miscellaneous Operators.mp4
    07:38
  • 6.1 opr in r.zip
  • 6. R basics summary.mp4
    07:51
  • 1. Conditional statement - if, else, else if.mp4
    06:17
  • 2.1 conditional statement.pptx
  • 2. Conditional statement - switch.mp4
    03:16
  • 3. Lab exercise.html
  • 1. For.mp4
    03:23
  • 2. While.mp4
    04:25
  • 3.1 r control structures.zip
  • 3. Repeat.mp4
    02:56
  • 1.1 Missing Value, Vector in R.pptx
  • 1. getting user input and explicit cohersion.mp4
    11:31
  • 2. getting user input part 2.mp4
    03:45
  • 3. logical check for string - grepl and grep.mp4
    03:56
  • 4. print vs cat vs paste method.mp4
    04:01
  • 5.1 string handling.zip
  • 5. String methods - toupper, tolower, substr, format.mp4
    07:31
  • 1. Indexing in vector.mp4
    05:20
  • 2. Indexing in vector - part 2.mp4
    03:16
  • 3. Built-in operation in R.mp4
    03:04
  • 4. Repeat operation in R.mp4
    03:44
  • 5. Lab exercise.html
  • 6. Lab solution - part 1.mp4
    12:54
  • 7. Lab solution - part 2.mp4
    13:52
  • 1. Intro to Function in R.mp4
    04:19
  • 2. Built-in function - seq, seq along.mp4
    06:27
  • 3. Built-in function - seq len.mp4
    08:32
  • 4. Built-in function rnorm.mp4
    05:03
  • 5. law of large number.mp4
    03:10
  • 6. Built-in function rnorm - part 2.mp4
    04:08
  • 7. Built-in function - runif.mp4
    01:46
  • 8.1 functions.zip
  • 8. Built-in function - sample.mp4
    04:56
  • 9. Lab exercise.html
  • 10. Lab solution - part 1.mp4
    09:08
  • 11. Lab solution - part 2.mp4
    09:15
  • 12. Lab solution - part 3.mp4
    10:42
  • 1. User defined function - part 1.mp4
    09:25
  • 2. User defined function - part 2.mp4
    07:30
  • 3. User defined function - part 3.mp4
    03:42
  • 4. User defined function - part 4.mp4
    06:28
  • 5. User defined function - part 5.mp4
    04:14
  • 6. User defined function - part 6.mp4
    03:56
  • 7. User defined function - part 7.mp4
    11:43
  • 8.1 functions cont.zip
  • 8. User defined function - part 8.mp4
    10:49
  • 9. Lab exercise.html
  • 1. Vectorized Approach.mp4
    12:35
  • 2.1 Vector.pptx
  • 2.2 vectorized fun.zip
  • 2. Vectorized Function.mp4
    06:10
  • 1. Introduction to Data Structure.mp4
    04:41
  • 2. List - Part 1.mp4
    12:33
  • 3. List - Part 2.mp4
    10:10
  • 4. List summary.mp4
    07:58
  • 5.1 list.pptx
  • 5.2 list.zip
  • 5. Manipulating List.mp4
    08:26
  • 6.1 List.pptx
  • 6.2 list.zip
  • 6. Converting List to Vector.mp4
    04:53
  • 7.1 matrix.pptx
  • 7. Matrix - Part 1.mp4
    08:03
  • 8. Matrix - Part 2.mp4
    05:29
  • 9. Matrix - Part 3.mp4
    05:09
  • 10. Matrix - Part 4.mp4
    05:14
  • 11.1 matrix.zip
  • 11. Matrix - Part 5.mp4
    10:38
  • 12. Lab exercise.html
  • 13. Date - Part 1.mp4
    15:08
  • 14.1 date.zip
  • 14. Date - Part 2.mp4
    04:28
  • 15. Factor - Part 1.mp4
    08:30
  • 16. Factor - Part 2.mp4
    07:25
  • 17.1 factor.zip
  • 17. Factor - Part 3.mp4
    03:05
  • 18. Array - Part 1.mp4
    04:48
  • 19. Array - Part 2.mp4
    09:05
  • 20. Array - Part 3.mp4
    08:46
  • 21.1 array.zip
  • 21. Array - Part 4.mp4
    03:20
  • 22. Lab Exercise.html
  • 23. DataFrame - Part 1.mp4
    04:52
  • 24. DataFrame - Part 2.mp4
    07:09
  • 25. DataFrame - Part 3.mp4
    05:07
  • 26. DataFrame - Part 4.mp4
    06:21
  • 27. DataFrame - Part 5.mp4
    09:39
  • 28. DataFrame - Part 6.mp4
    03:37
  • 29.1 DataFrame.pdf
  • 29.2 dataframe.zip
  • 29. DataFrame - Summary.mp4
    02:18
  • 30. Lab exercise.html
  • 1. Data Manipulation - Part 1.mp4
    07:00
  • 2. Data Manipulation - Part 2.mp4
    08:10
  • 3. Data Manipulation - Part 3.mp4
    07:27
  • 4.1 data manipulation.zip
  • 4. Data Manipulation - Part 4.mp4
    05:44
  • 1. R Package - Part 1.mp4
    10:46
  • 2.1 packages.zip
  • 2. R Package - Part 2.mp4
    13:37
  • 1. apply function - part 1.mp4
    06:21
  • 2. apply function - part 2.mp4
    07:50
  • 3. apply function - part 3.mp4
    01:55
  • 4. lapply function - part 1.mp4
    00:59
  • 5. lapply function - part 2.mp4
    05:50
  • 6. sapply function - part 1.mp4
    03:20
  • 7. sapply function - part 2.mp4
    01:48
  • 8. tapply function.mp4
    04:33
  • 9.1 apply function.zip
  • 9. summary.mp4
    04:55
  • 1.1 data reshaping.zip
  • 1.2 NYC temperature data.csv
  • 1. Data Reshaping introduction.mp4
    13:41
  • 2. Aggregating - Part 1.mp4
    07:25
  • 3. Aggregating - Part 2.mp4
    04:21
  • 4. sorting.mp4
    03:09
  • 5. mergining - inner join.mp4
    05:33
  • 6. types of joins.mp4
    02:04
  • 7. left, right and full join.mp4
    07:54
  • 8. Lab exercise.html
  • 1. Data visualization - part 1.mp4
    08:39
  • 2. Data visualization - part 2.mp4
    08:22
  • 3. scatter plot using base R.mp4
    02:29
  • 4. scatter plot using ggplot - part 1.mp4
    06:00
  • 5. scatter plot using ggplot - part 2.mp4
    08:34
  • 6. Summary.mp4
    04:02
  • 7. Line plot using base R.mp4
    05:35
  • 8. Line plot using ggplot - part 1.mp4
    08:39
  • 9.1 line plot.zip
  • 9. Line plot using ggplot - part2.mp4
    06:19
  • 10. Histogram using base R.mp4
    06:25
  • 11.1 histogram plot.zip
  • 11. Histogram uisng ggplot.mp4
    04:47
  • 12. Bar plot using base R - part 1.mp4
    08:25
  • 13. Bar plot using base R - part 2.mp4
    04:26
  • 14.1 bar plot.zip
  • 14. Bar plot using ggplot.mp4
    05:26
  • 15. Box plot using Base R.mp4
    17:07
  • 16.1 box plot.zip
  • 16. Box plot using ggplot.mp4
    03:18
  • 1. Introduction to working with excel file.mp4
    11:44
  • 2. Data cleaning - part 1.mp4
    11:25
  • Description


    Data analytics, R programming

    What You'll Learn?


    • What is data and its types
    • Overview of the R programming language.
    • Installation of R and Rstudio in Ubuntu environment
    • Basic syntax and data structures
    • Operators, control and looping statement in R
    • String handling, vector operator in R
    • Built-in and user defined function in R
    • Vectorization in R
    • Data Structure Data Manipulation, Data Reshaping, Data visualization
    • Data visualization using base R, ggplot2 and other visualization libraries.
    • Reading and importing and handling missing data from different source (CSV, Excel, databases).
    • Different Case studies and practical projects.

    Who is this for?


  • Students pursuing degrees in fields related to data science, statistics, business, or a related discipline who want to build practical skills in data analytics.
  • IT professionals seeking to expand their skills into the field of data analytics using R.
  • Individuals with a general interest in data analytics who want to learn how to use R for analyzing and visualizing data.
  • What You Need to Know?


  • Having a basic understanding of programming concepts can be beneficial.
  • A foundational understanding of basic statistical concepts like mean, median, standard deviation, and so on.
  • Basic mathematical operations used in data analytics.
  • An awareness of fundamental data concepts, such as types of data, and basic data structures, can be beneficial.
  • More details


    Description

    Unlock the power of data with our comprehensive "Data Analytics Using R Programming" course. In this immersive learning experience, participants will delve into the world of data analytics, mastering the R programming language to extract valuable insights from complex datasets. Whether you're a seasoned data professional or a newcomer to the field, this course provides a solid foundation and advanced techniques to elevate your analytical skills.


    Key Learning Objectives:


    R Programming Fundamentals:

    Gain a deep understanding of the R programming language, covering syntax, data structures, and essential functions.

    Data Import and Cleaning:

    Learn how to import data from various sources and perform data cleaning and preprocessing to ensure accurate analysis.

    Exploratory Data Analysis (EDA):

    Develop skills in descriptive statistics, data summarization, and advanced visualization techniques using ggplot2.

    Real-World Applications:

    Apply your newfound knowledge to real-world data analytics challenges, working on hands-on projects that simulate the complexities of professional scenarios.

    Course Format:

    This course is delivered through a combination of video lectures, hands-on exercises, and real-world projects. Participants will have access to a supportive online community and regular opportunities for live Q&A sessions.


    By the end of this course, you will be equipped with the skills to navigate the data analytics landscape confidently, making informed decisions and uncovering hidden patterns in data. Join us on this journey to become a proficient data analyst using the versatile R programming language. Enroll today and harness the power of data!

    Who this course is for:

    • Students pursuing degrees in fields related to data science, statistics, business, or a related discipline who want to build practical skills in data analytics.
    • IT professionals seeking to expand their skills into the field of data analytics using R.
    • Individuals with a general interest in data analytics who want to learn how to use R for analyzing and visualizing data.

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Vignesh Muthuvelan
    Vignesh Muthuvelan
    Instructor's Courses
    Greetings Future Tech Enthusiasts,I'm not your average technical trainer; I'm a tech aficionado on a mission to ignite the spark of curiosity in the world of ones and zeros ? Imagine a guide who not only holds the secrets of Computer Science but also has the master key to the realms of Human Resources and Cloud Computing. Yes, that's meCredentials at a Glance:- Bachelor's Degree in Computer Science- Master's Degree in HR (because even machines need good HR practices)- Advanced Diploma in Cloud Computing (I like my head in the clouds – the digital ones, of course)Teaching Experience:For the past few years, I've been sprinkling the magic of knowledge in esteemed organizations. Picture this: a classroom filled with eager minds, a whiteboard covered in doodles of algorithms, and a trainer who believes that learning should be a blend of exploration and fun.Why Me?1. Versatility:- I don't just speak binary; I'm fluent in the language of humans and the cloud. My unique blend of skills means you get a holistic view of the tech landscape.2. Cutting-Edge Explorer:- I don't chase trends; I set them. Staying at the forefront of technology is not just a habit; it's a lifestyle. Let's explore the future together3. Passionate Communicator:- Teaching isn't just my job; it's my passion. Complex concepts become simple stories, and I'm here to make sure no tech term feels like a tongue-twister.What to Expect:- Engaging lessons that go beyond the textbooks.- Practical insights from the industry trenches.- A sprinkle of humor to keep the code bugs away.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 137
    • duration 13:56:09
    • Release Date 2024/04/13

    Courses related to Data Analysis

    Courses related to R Programming