Companies Home Search Profile

Data Analytics 360: Become Data Analyst in Python & Excel

Focused View

StatElite Academy

20:35:10

599 View
  • 1.1 1. Un DA.pdf
  • 1. Data analysis definition, types and examples.mp4
    07:11
  • 2.1 2. Key COMP.pdf
  • 2. Key components of data analysis.mp4
    10:18
  • 3.1 3. Tools.pdf
  • 3. Tools and technologies for data analysis.mp4
    08:41
  • 4.1 4. Application DA.pdf
  • 4. Real-world application of data analysis.mp4
    04:25
  • 5. Understanding data analysis.html
  • 1.1 5. Data source.pdf
  • 1. Various sources of collecting data.mp4
    05:27
  • 2.1 6. Sampling methods.pdf
  • 2. Population vs sample and its methods.mp4
    11:05
  • 3. Understanding data collection.html
  • 1.1 8. Data Cleaning.pdf
  • 1. Why you cannot ignore cleaning your data.mp4
    04:04
  • 2.1 9. Methods of DC.pdf
  • 2. Various aspects of data cleaning.mp4
    14:12
  • 3. Techniques of Data Cleaning.html
  • 1.1 20. Joining.pdf
  • 1. Various aspects of Joining datasets.mp4
    08:50
  • 2.1 21. Concatenating.pdf
  • 2. Adding extra data with concatenation.mp4
    04:05
  • 3. Understanding joining and concatenation.html
  • 1.1 11. EDA.pdf
  • 1. EDA for generating significant insights.mp4
    05:37
  • 2. Methods of exploratory data analysis Part 1.mp4
    12:15
  • 3. Methods of exploratory data analysis Part 2.mp4
    11:17
  • 4.1 12. 13. 14. Methods of EDA.pdf
  • 4. Methods of exploratory data analysis Part 3.mp4
    15:36
  • 5. Exploratory Data Analysis.html
  • 1.1 22. Statistical Data Analysis.pdf
  • 1. The application of statistical test.mp4
    08:31
  • 2.1 23. Types of Statistics.pdf
  • 2. Types of statistical data analysis.mp4
    04:58
  • 3.1 24. stat v s eda.pdf
  • 3. Statistical test vs Exploratory data analysis.mp4
    04:10
  • 4. A Recap on descriptive statistics methods.mp4
    03:14
  • 5. Inferential statistics Part 1 T-tests and ANOVA.mp4
    06:54
  • 6.1 25. 26. 27. methods of ds and is.pdf
  • 6. Inferential statistics Part 2 Relationships measures.mp4
    03:16
  • 7.1 28. Lin reg.pdf
  • 7. Inferential statistics Part 3 Linear regression.mp4
    11:53
  • 8. Statistical data analysis.html
  • 1.1 31. Probability in Data Analysis.pdf
  • 1. Probability in data analysis.mp4
    08:10
  • 2.1 32. Classical Probability.pdf
  • 2. Classical probability.mp4
    04:58
  • 3.1 33. Empirical Probability.pdf
  • 3. Empirical probability.mp4
    05:21
  • 4.1 34. Conditional Probability.pdf
  • 4. Conditional probability.mp4
    07:07
  • 5.1 35. Joint Probability.pdf
  • 5. Joint probability.mp4
    04:47
  • 6. Probabilities in data analysis.html
  • 1.1 36. Hypothesis Testing.pdf
  • 1. Hypothesis testing for inferential statistics.mp4
    06:03
  • 2.1 37. Selecting Appropriate Statistical Test.pdf
  • 2. Selecting statistical test and assumption testing.mp4
    10:26
  • 3.1 38. CSP.pdf
  • 3. Confidence level, significance level, p-value.mp4
    03:37
  • 4.1 39. Making Decision and Conclusion.pdf
  • 4. Making decision and conclusion on findings.mp4
    02:55
  • 5.1 40. Example HT.pdf
  • 5. Complete statistical analysis and hypothesis testing.mp4
    07:01
  • 6. Hypothesis Testing in Statistical Analysis.html
  • 1.1 16. DTP.pdf
  • 1. Transforming data for improved analysis.mp4
    05:14
  • 2. Techniques for data transformation Part 1.mp4
    06:11
  • 3.1 17. 18. Mthods of DTP.pdf
  • 3. Techniques for data transformation Part 2.mp4
    04:07
  • 4. Understanding Data Transformation.html
  • 1.1 41. ML in Data Analysis.pdf
  • 1. ML for data analysis and decision-making.mp4
    06:07
  • 2.1 42. Types of Machine Learning.pdf
  • 2. Widely used ML methods in the data analytics.mp4
    11:11
  • 3.1 43. steps in ML.pdf
  • 3. Steps in developing machine learning model.mp4
    07:43
  • 4. Machine learning in Data analysis.html
  • 1.1 44. Data Visualization.pdf
  • 1. Visualizing data for the best insight delivery.mp4
    04:33
  • 2. Several methods of data visualization Part 1.mp4
    04:04
  • 3. Several methods of data visualization Part 2.mp4
    05:38
  • 4.1 45. 46. 47. Data Visualization Methods.pdf
  • 4. Several methods of data visualization Part 3.mp4
    07:17
  • 5. Data visualization and methods.html
  • 1.1 employee dataset.xlsx
  • 1. Identifying and removing duplicates.mp4
    04:52
  • 2. Dealing with duplicates in Excel.html
  • 3.1 missing mployee dataset.xlsx
  • 3. Dealing with missing values.mp4
    14:55
  • 4. Dealing with missing values in Excel.html
  • 5.1 outliers sales data.xlsx
  • 5. Dealing with outliers.mp4
    09:50
  • 6. Dealing with outliers in Excel.html
  • 7.1 Incon sales data.xlsx
  • 7. Finding and imputing inconsistent values.mp4
    07:12
  • 8. Dealing with inconsistent value in Excel.html
  • 9.1 practice text to column.xlsx
  • 9. Text-to-columns for data separation.mp4
    03:28
  • 10. Data separation in Excel.html
  • 1.1 filtering data.xlsx
  • 1. Applying sorts & filters to narrow down data.mp4
    07:26
  • 2. Sorting and filtering in Excel.html
  • 3.1 advanced filtering data.xlsx
  • 3. Advanced filtering with custom criteria.mp4
    05:59
  • 4. Advanced filtering in Excel.html
  • 1.1 highlight cells.xlsx
  • 1. Highlighting cells based on criteria.mp4
    08:24
  • 2. Highlighting cells in Excel.html
  • 3.1 topbottom.xlsx
  • 3. Findings top and bottom insights.mp4
    04:44
  • 4. Top and bottom insights in Excel.html
  • 5.1 colorbar.xlsx
  • 5. Creating color scales and color bars.mp4
    06:52
  • 6. Color bar presentation in Excel.html
  • 1.1 business growth data.xlsx
  • 1. SUM, AVERAGE, MIN, and MAX functions.mp4
    09:42
  • 2. Applying SUM and AVERAGE in Excel.html
  • 3.1 business growth data.xlsx
  • 3. SUMIF, and AVERAGEIF functions.mp4
    08:32
  • 4. Applying conditional aggregate function in Excel.html
  • 5.1 business growth data.xlsx
  • 5. COUNT, COUNTA, and COUNTIF functions.mp4
    08:04
  • 6. Using COUNTIF function in Excel.html
  • 7.1 business growth data.xlsx
  • 7. YEAR, MONTH and DAY for date manipulation.mp4
    03:41
  • 8. Extracting key elements of date in Excel.html
  • 9.1 business growth data.xlsx
  • 9. IF STATEMENTs for conditional operation.mp4
    10:42
  • 10. Performing NESTED IF operation in Excel.html
  • 11.1 employeeInfo.xlsx
  • 11. VLOOKUP for column-wise insight search.mp4
    06:56
  • 12. Performing VLOOKUP operation in Excel.html
  • 13.1 sales crosstab.xlsx
  • 13. HLOOKUP for row-wise insight search.mp4
    06:59
  • 14. Performing HLOOKUP operation in Excel.html
  • 15.1 xlookup.xlsx
  • 15. XLOOKUP for robust & complex insight search.mp4
    07:05
  • 16. Performing XLOOKUP operation in Excel.html
  • 1.1 sales data.xlsx
  • 1. Analyze data with Stacked and cluster bar charts.mp4
    12:43
  • 2. Stacked bar chart for analysis in Excel.html
  • 3.1 sales data.xlsx
  • 3. Analyze data with Pie chart and line chart.mp4
    08:32
  • 4. Pie chart for analysis in Excel.html
  • 5.1 sales data.xlsx
  • 5. Analyze data with Area chart and TreeMap.mp4
    08:29
  • 6. Area chart for analysis in Excel.html
  • 7.1 sales data.xlsx
  • 7. Analyze data with Boxplot and Histogram.mp4
    05:14
  • 8. Boxplot for analysis in Excel.html
  • 9.1 sale data.xlsx
  • 9. Analyze data with Scatter plot and Combo chart.mp4
    04:57
  • 10. Scatter plot for analysis in Excel.html
  • 11.1 sale data.xlsx
  • 11. Adjusting and decorating graphs and charts.mp4
    04:47
  • 1.1 Pivot data p1.xlsx
  • 1. PivotTables for GROUP data analysis PART 1.mp4
    09:16
  • 2. PivotTables for analysis in Excel.html
  • 3.1 Pivot data p2.xlsx
  • 3. PivotTables for CROSSTAB data analysis PART 2.mp4
    05:06
  • 4. PivotTables for analysis in Excel.html
  • 5.1 Pivot data p3.xlsx
  • 5. PivotCharts and Slicers for interactivity.mp4
    06:41
  • 6. PivotCharts and Slicers for analysis in Excel.html
  • 1.1 data for statistics.xlsx
  • 1. Descriptive statistics and analysis.mp4
    06:12
  • 2. Find the key descriptives of numeric data.html
  • 3.1 data for ind t-tests.xlsx
  • 3. Independent sample t-test for two samples.mp4
    08:41
  • 4. Find the difference between two groups.html
  • 5.1 data for paired t-tests.xlsx
  • 5. Paired sample t-test for two samples.mp4
    05:08
  • 6. Find the difference between two time frames.html
  • 7.1 data for anova.xlsx
  • 7. Analysis of variance One way ANOVA.mp4
    07:30
  • 8. Find the difference among various groups.html
  • 9.1 data for corr.xlsx
  • 9. Correlation analysis for relationship.mp4
    10:16
  • 10. Find the relationship of two numeric data.html
  • 11.1 data for reg.xlsx
  • 11. Multiple linear regression analysis.mp4
    12:23
  • 12. Find the influence of IVs on DV.html
  • 1.1 1. acc inf.xlsx
  • 1. Accumulating relevant information.mp4
    08:40
  • 2.1 2. canvas.xlsx
  • 2. Creating a canvas for dashboard.mp4
    05:32
  • 3.1 3. dashboard.xlsx
  • 3. Developing the complete dashboard.mp4
    07:36
  • 4.1 4. decor dash.xlsx
  • 4. Final touch up for dashboard decoration.mp4
    05:09
  • 5. Creating a dashboard in Excel.html
  • 1. Bank Churn Data Analysis.html
  • 1.1 Mac.pdf
  • 1. Installing Python and Jupyter Notebook Mac.html
  • 2.1 Windows.pdf
  • 2. Installing Python and Jupyter Notebook Windows.html
  • 3. More alternative methods Check the article.html
  • 4.1 Resources.zip
  • 4. Resources used for this section.html
  • 1. Getting started with first python code.mp4
    04:36
  • 2. Printing function.html
  • 3. Assigning variable names correctly.mp4
    09:05
  • 4. Creating variables.html
  • 5. Various data types and data structures.mp4
    07:22
  • 6. Converting and casting data types.mp4
    09:49
  • 7. Converting data types #1.html
  • 8. Converting data types #2.html
  • 9. Converting data types #3.html
  • 10.1 starting with variables to data types.zip
  • 10. Starting with Variables to Data Types.html
  • 1. Arithmetic operators (+, -, , , %, ).mp4
    06:44
  • 2. Arithmetic operation #1.html
  • 3. Arithmetic operation #2.html
  • 4. Arithmetic operation #3.html
  • 5. Arithmetic operation #4.html
  • 6. Arithmetic operation #5.html
  • 7. Arithmetic operation #6.html
  • 8. Comparison operators (, , =, =, ==, !=).mp4
    07:35
  • 9. Comparison operation #1.html
  • 10. Comparison operation #2.html
  • 11. Comparison operation #3.html
  • 12. Comparison operation #4.html
  • 13. Logical operators (and, or, not).mp4
    07:06
  • 14.1 operators in python programming.zip
  • 14. Operators in Python Programming.html
  • 1. Lists creation, indexing, slicing, modifying.mp4
    15:59
  • 2. Creating list.html
  • 3. Indexing list.html
  • 4. Slicing list.html
  • 5. Adding element.html
  • 6. Removing element.html
  • 7. Replacing element.html
  • 8. Sets unique elements, operations.mp4
    07:51
  • 9. Union sets.html
  • 10. Reducing sets.html
  • 11. Dictionaries key-value pairs, methods.mp4
    09:23
  • 12. Create dictionary.html
  • 13. Adding keys and values.html
  • 14.1 dealing with data structures.zip
  • 14. Several data structures.html
  • 1. Conditional statements (if, elif, else).mp4
    07:04
  • 2. Conditional statement #1.html
  • 3. Conditional statement #2.html
  • 4. Nested logical expressions in conditions.mp4
    09:57
  • 5. Logical expression #1.html
  • 6. Logical expression #2.html
  • 7. Logical expression #3.html
  • 8. Looping structures (for loops, while loops).mp4
    09:12
  • 9. For loop.html
  • 10. While loop.html
  • 11. Defining, creating, and calling functions.mp4
    05:11
  • 12. Dealing with function #1.html
  • 13. Dealing with function #2.html
  • 14.1 conditionals looping and functions.zip
  • 14. Conditionals Looping and Functions.html
  • 1.1 1. loading data.pdf
  • 1. Preparing notebook and loading data.mp4
    13:14
  • 2. Loading csv data.html
  • 3.1 2. identify missing values.pdf
  • 3. Identifying missing or null values.mp4
    05:02
  • 4. missing values.html
  • 5.1 3. imputing missing values.pdf
  • 5. Method of missing value imputation.mp4
    13:23
  • 6. imputing missing values.html
  • 7.1 4. checking data types.pdf
  • 7. Exploring data types in a dataframe.mp4
    05:37
  • 8. Checking data types.html
  • 9.1 5. removing inconsistent value.pdf
  • 9. Dealing with inconsistent values.mp4
    08:33
  • 10. Finding the unique values.html
  • 11. Removing inconsistent value.html
  • 12.1 6. assigning data type.pdf
  • 12. Assigning correct data types.mp4
    04:33
  • 13. Assigning data type.html
  • 14.1 7. dealing with duplicates.pdf
  • 14. Dealing with duplicated values.mp4
    05:20
  • 15. Identify duplicates.html
  • 16. Removing duplicates.html
  • 17.1 data loading and cleaning .zip
  • 17. Sequential data cleaning and modifying.html
  • 1.1 8. sorting data.pdf
  • 1. Sorting data by column and order.mp4
    05:51
  • 2. dataset sorting.html
  • 3.1 9. boolean filtering.pdf
  • 3. Filtering data with boolean indexing.mp4
    08:47
  • 4. Boolean filtering #1.html
  • 5. Boolean filtering #2.html
  • 6.1 10. query.pdf
  • 6. Query method for precise filtering.mp4
    05:59
  • 7. Query method.html
  • 8.1 11. is in.pdf
  • 8. Filtering data with isin method.mp4
    05:37
  • 9. IsIn filtering method.html
  • 10.1 12. loc and iloc.pdf
  • 10. Slicing dataframe with loc and iloc.mp4
    10:21
  • 11. Slicing with loc.html
  • 12. Slicing with iloc.html
  • 13.1 13. combining conditions.pdf
  • 13. Filtering data for many conditions.mp4
    07:19
  • 14. Multiple conditions.html
  • 15.1 data sorting and filtering.zip
  • 15. Various methods of data manipulation.html
  • 1.1 14. joining data.pdf
  • 1. Joining dataframes horizontally.mp4
    07:26
  • 2. Inner joining.html
  • 3.1 15. concatenating data.pdf
  • 3. Concatenate dataframes vertically.mp4
    08:33
  • 4. Vertical concatenation.html
  • 5.1 merging and joining dataframes.zip
  • 5. Merging and joining dataframes.html
  • 1.1 16. value counts.pdf
  • 1. Frequency and percentage analysis.mp4
    06:56
  • 2. Value counts method.html
  • 3.1 17. descriptive.pdf
  • 3. Descriptive statistics and analysis.mp4
    09:03
  • 4. Descriptive statistics.html
  • 5.1 18. group by.pdf
  • 5. Group by data analysis method.mp4
    05:41
  • 6. Group by method.html
  • 7.1 19. pivot table.pdf
  • 7. Pivot table analysis - all in one.mp4
    13:42
  • 8. Pivot table.html
  • 9.1 20. crosstab.pdf
  • 9. Cross-tabulation analysis method.mp4
    04:42
  • 10. Cross-tabulation.html
  • 11.1 21. correl.pdf
  • 11. Correlation analysis for numeric data.mp4
    08:37
  • 12. Correlation analysis.html
  • 13.1 applied exploratory data analysis.zip
  • 13. Applied exploratory data analysis.html
  • 1.1 22. methods used in visualisation.pdf
  • 1. Understanding visualisation tools.mp4
    06:46
  • 2.1 23. bar chart.pdf
  • 2. Getting started with bar charts.mp4
    12:18
  • 3. Bar chart.html
  • 4.1 24. stacked or clustered .pdf
  • 4. Stacked and clustered bar charts.mp4
    09:40
  • 5. Clustered bar plot.html
  • 6.1 25. pie chart.pdf
  • 6. Pie chart for percentage analysis.mp4
    06:23
  • 7. Pie chart.html
  • 8.1 26. line plot.pdf
  • 8. Line chart for grouping data analysis.mp4
    07:53
  • 9. Line chart.html
  • 10.1 27. histogram.pdf
  • 10. Exploring distribution with histogram.mp4
    10:30
  • 11. Histogram.html
  • 12.1 28. scatterplot.pdf
  • 12. Correlation analysis via scatterplot.mp4
    09:03
  • 13. Scatter plot.html
  • 14.1 29. heatmap.pdf
  • 14. Matrix visualisation with heatmap.mp4
    08:01
  • 15. Heatmap.html
  • 16.1 30. boxplot.pdf
  • 16. Boxplot statistical visualisation method.mp4
    08:40
  • 17. Box plot.html
  • 18.1 data visualisations.zip
  • 18. Exploring data visualisations methods.html
  • 1.1 31. check distribution.pdf
  • 1. Investigating distribution of numeric data.mp4
    21:31
  • 2. Kdeplot for distribution.html
  • 3.1 32. normality test.pdf
  • 3. Shapiro Wilk test of normality.mp4
    10:57
  • 4. Normality test.html
  • 5.1 33. square root transformation.pdf
  • 5. Starting with square root transformation.mp4
    14:05
  • 6. SQRT transformation.html
  • 7.1 34. log transformation.pdf
  • 7. Logarithmic transformation method.mp4
    10:18
  • 8. LOG transformation.html
  • 9.1 35. boxcox transformation.pdf
  • 9. Box-cox power transformation method.mp4
    08:51
  • 10. BOXCOX transformation.html
  • 11.1 36. yeojohnson transformation.pdf
  • 11. Yeo-Johnson power transformation method.mp4
    09:34
  • 12. YEO-JOHNSON transformation.html
  • 13.1 transformation methods.zip
  • 13. Practical data transformation methods.html
  • 1.1 37. one sample ttest.pdf
  • 1. One sample t-test.mp4
    09:56
  • 2. One sample t-test.html
  • 3.1 38. independent sample t-test.pdf
  • 3. Independent sample t-test.mp4
    12:02
  • 4. Two sample t-test.html
  • 5.1 39. one way anova.pdf
  • 5. One way Analysis of Variance.mp4
    14:55
  • 6. Levenes test.html
  • 7. Analysis of variance.html
  • 8.1 40. chi test for ind.pdf
  • 8. Chi square test for independence.mp4
    07:18
  • 9. Cross-tabulation test.html
  • 10.1 41. pearson correlation.pdf
  • 10. Pearson correlation analysis.mp4
    10:28
  • 11. Pearson correlation.html
  • 12.1 42. linear regression.pdf
  • 12. Linear regression analysis.mp4
    14:57
  • 13. Linear regression test.html
  • 14.1 statistical tests and hypothesis testing.zip
  • 14. Statistical tests and hypothesis testing.html
  • 1.1 43. feature generation.pdf
  • 1. Generating new features.mp4
    08:18
  • 2. Feature generation.html
  • 3.1 44. datetime data.pdf
  • 3. Extracting day, month and year.mp4
    07:34
  • 4. Date element extraction.html
  • 5.1 45. feature encoding.pdf
  • 5. Encoding features - LabelEncoder.mp4
    06:15
  • 6. Feature encoding.html
  • 7.1 46. feature binning.pdf
  • 7. Categorizing numeric feature.mp4
    10:04
  • 8. Feature binning.html
  • 9.1 46. feature mapping.pdf
  • 9. Manual feature encoding.mp4
    06:26
  • 10. Feature mapping.html
  • 11.1 47. creating dummies.pdf
  • 11. Converting features into dummy.mp4
    05:54
  • 12. Generating dummies.html
  • 13.1 feature engineering methods.zip
  • 13. Feature engineering methods.html
  • 1.1 48. selecting features.pdf
  • 1. Selecting features and target.mp4
    09:02
  • 2. Feature selection.html
  • 3.1 49. standard scaling.pdf
  • 3. Scaling features - StandardScaler.mp4
    05:30
  • 4. Standard scaling.html
  • 5.1 50. minmax scaler.pdf
  • 5. Scaling features - MinMaxScaler.mp4
    04:45
  • 6. MinMax scaling.html
  • 7.1 51. PCA.pdf
  • 7. Dimensionality reduction with PCA.mp4
    12:58
  • 8. Explained variance ratio.html
  • 9. Select n component.html
  • 10. Principal component analysis.html
  • 11.1 52. train test split.pdf
  • 11. Splitting into train and test set.mp4
    09:29
  • 12. Train test split.html
  • 13.1 preprocessing for machine learning.zip
  • 13. Preprocessing for machine learning.html
  • 1.1 1. LR model ML.pdf
  • 1. Linear regression ML model.mp4
    10:32
  • 2. Build Linear Regression ML.html
  • 3. Make prediction with LR model.html
  • 4. Evaluate the LR model.html
  • 5.1 2. DTR model ML.pdf
  • 5. Decision tree regressor ML model.mp4
    07:16
  • 6. Decision tree regressor.html
  • 7.1 3. RFR model ML.pdf
  • 7. Random forest regressor ML model.mp4
    07:58
  • 8. Random forest regressor.html
  • 9.1 regression machine learning.zip
  • 9. Supervised regression ML models.html
  • 1.1 4. LGR model ML.pdf
  • 1. Logistic regression ML model.mp4
    13:46
  • 2. Build Logistic Regression ML.html
  • 3. Evaluate the LGR model.html
  • 4.1 5. DTC model ML.pdf
  • 4. Decision tree classification ML model.mp4
    08:15
  • 5. Decision tree classification.html
  • 6.1 6. RFC model ML.pdf
  • 6. Random forest classification ML model.mp4
    05:55
  • 7. Random forest classification.html
  • 8.1 classification machine learning.zip
  • 8. Supervised classification ML models.html
  • 1. Calculating within cluster sum of squares.mp4
    11:50
  • 2. Calculating WCSS.html
  • 3.1 7. selecting best k.pdf
  • 3. Selecting optimal number of clusters.mp4
    03:32
  • 4. Plotting Elbow chart.html
  • 5.1 8. developing k means.pdf
  • 5. Application of KMeans machine learning.mp4
    07:51
  • 6. Building KMeans cluster.html
  • 7.1 data segmentation with kmeans clustering.zip
  • 7. Data segmentation with KMeans clustering.html
  • 1. Segmenting and Classifying the Best Strikers.html
  • 1.1 Microsoft Excel Data Analysis Cheat Sheet.pdf
  • 1. Extra note on functions and shortcuts.html
  • 2.1 Python data analysis code cheatsheet.pdf
  • 2. Extra note on python data analysis.html
  • Description


    Master Python and Excel - 2 Widely Used Tools for A-Z Data Analysis with Complete Foundations and Hands-on Applications.

    What You'll Learn?


    • You will master the fundamentals of data analytics, including facts and theories, statistical analysis, hypothesis testing, and machine learning.
    • You will learn how to apply conditional formatting in Excel to visually highlight key trends, insights, and anomalies within your data.
    • You will learn essential Excel formulas and functions such as SUM, AVERAGE, COUNT, IF statements and MORE, enabling you to manipulate data effectively.
    • You will learn to utilize Excel's lookup functions (VLOOKUP, HLOOKUP, XLOOKUP) to efficiently search for and retrieve specific information within datasets.
    • You will learn various graph and chart types in Excel for data visualization, including bar charts, pie charts, scatter plots, and more to communicate insights.
    • You will learn advanced analysis using PivotTables and PivotCharts, enabling you to analyze, and visualize complex datasets with ease and interactivity.
    • You will learn to use Excel's built-in data analysis tools for statistical analysis, i.e., descriptive statistics, t-tests, ANOVA, correlation, and regression.
    • You will learn to design and create dynamic DASHBOARD in Excel, by a visually interactive format for effective decision-making and reporting.
    • You will learn the important Python programming basics such as variables naming, data types, lists, dictionaries, dataframes, sets, loops, functions etc.
    • You will master a range of methods and techniques for data cleaning, sorting, filtering, data manipulation, transformation, and data preprocessing in Python.
    • You will learn to use Python for data visualizations, exploratory data analysis, statistical analysis, hypothesis testing methods and machine learning models.
    • You will work on practical data analysis projects to apply learned skills. Enhance problem-solving abilities through hands-on data analysis exercises.

    Who is this for?


  • Those who are highly interested in learning complete data analytics using Python.
  • Individuals aiming to develop comprehensive knowledge in data cleaning, analysis, visualization, and dashboard creation in Excel.
  • This course is NOT for those who are interested to learn data science or advanced machine learning application.
  • What You Need to Know?


  • Access to computer and internet
  • Basic computer literacy
  • No coding experience required
  • Dedication, patience and perseverance
  • More details


    Description

    Are you ready to embark on a journey into the world of data analytics? Welcome to Data Analytics 360, where you'll master two of the most powerful tools in the field: Python and Excel. In this comprehensive course, you'll dive deep into the foundations of data analysis, from basic statistical concepts to advanced machine learning techniques.


    Master the Fundamentals: Gain a solid understanding of data analytics principles, including statistical analysis, hypothesis testing, and machine learning. Whether you're new to the field or looking to sharpen your skills, this course provides the perfect starting point.


    Excel for Data Analysis: Unlock the full potential of Excel as a data analysis tool. Learn essential formulas and functions, harness the power of conditional formatting to identify trends and anomalies, and utilize lookup functions for efficient data retrieval. Discover the art of data visualization with various chart types and master advanced analysis with PivotTables and PivotCharts.


    Python Essentials: Dive into Python programming basics, from variables and data types to loops and functions. Explore methods for data cleaning, sorting, filtering, and manipulation, as well as techniques for exploratory data analysis and hypothesis testing. Harness the power of Python libraries for data visualization and machine learning.


    Hands-on Projects: Put your skills to the test with practical data analysis projects. From cleaning and preprocessing data to building machine learning models, you'll tackle real-world challenges and enhance your problem-solving abilities along the way.


    Become a Data Analyst: By the end of this course, you'll have the knowledge and skills to excel as a data analyst. Whether you're looking to advance your career or explore new opportunities, Data Analytics 360 equips you with the tools you need to succeed in the world of data.


    Enroll now and take the first step towards becoming a proficient data analyst with Data Analytics 360.

    Who this course is for:

    • Those who are highly interested in learning complete data analytics using Python.
    • Individuals aiming to develop comprehensive knowledge in data cleaning, analysis, visualization, and dashboard creation in Excel.
    • This course is NOT for those who are interested to learn data science or advanced machine learning application.

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    StatElite Academy
    StatElite Academy
    Instructor's Courses
    At StatElite Academy, our mission is to democratize access to statistical knowledge and empower individuals to excel in the realm of data analysis and interpretation. We believe that statistics is not merely a tool for academics or professionals in specific fields but a vital skill set for anyone navigating today's data-driven world. Through comprehensive courses and hands-on training, we aim to break down complex statistical concepts into easily understandable modules, fostering a community of lifelong learners equipped with the analytical prowess to tackle real-world problems.Our vision is to cultivate a global network of statistically literate individuals who not only possess the technical proficiency to analyze data but also the creative insight to derive meaningful insights. By emphasizing practical applications and real-world scenarios, we strive to bridge the gap between theory and practice, enabling our students to thrive in diverse industries and embark on successful freelance careers. At StatElite Academy, we envision a future where statistical literacy is not just a skill but a cornerstone of informed decision-making and innovation.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 154
    • duration 20:35:10
    • English subtitles has
    • Release Date 2024/06/16