Companies Home Search Profile

Data Analysis with Python: NumPy & Pandas Masterclass

Focused View

Maven Analytics,Chris Bruehl

13:17:03

6 View
  • 1. Course Structure & Outline.mp4
    01:49
  • 2. READ ME Important Notes for New Students.html
  • 3.1 Data Analysis With Python & Pandas.pdf
  • 3.2 Pandas Course Resources.zip
  • 3. DOWNLOAD Course Resources.html
  • 4. Introducing the Course Project.mp4
    00:52
  • 5. Setting Expectations.mp4
    01:18
  • 6. Jupyter Installation & Launch.mp4
    02:55
  • 1. Pandas & NumPy Intro.mp4
    02:53
  • 2. Numpy Arrays & Array Properties.mp4
    07:40
  • 3. ASSIGNMENT Array Basics.mp4
    01:49
  • 4. SOLUTION Array Basics.mp4
    02:07
  • 5. Array Creation.mp4
    08:18
  • 6. Random Number Generation.mp4
    06:02
  • 7. ASSIGNMENT Array Creation.mp4
    01:31
  • 8. SOLUTION Array Creation.mp4
    04:32
  • 9. Indexing & Slicing Arrays.mp4
    09:13
  • 10. ASSIGNMENT Indexing & Slicing Arrays.mp4
    01:11
  • 11. SOLUTION Indexing & Slicing Arrays.mp4
    02:23
  • 12. Array Operations.mp4
    07:49
  • 13. ASSIGNMENT Array Operations.mp4
    02:09
  • 14. SOLUTION Array Operations.mp4
    04:21
  • 15. Filtering Arrays & Modifying Array Values.mp4
    10:56
  • 16. The Where Function.mp4
    04:00
  • 17. ASSIGNMENT Filtering & Modifying Arrays.mp4
    02:04
  • 18. SOLUTION Filtering & Modifying Arrays.mp4
    03:11
  • 19. Array Aggregation.mp4
    06:57
  • 20. Array Functions.mp4
    07:41
  • 21. Sorting Arrays.mp4
    03:52
  • 22. ASSIGNMENT Aggregation & Sorting.mp4
    01:11
  • 23. SOLUTION Aggregation & Sorting.mp4
    01:35
  • 24. Vectorization.mp4
    04:23
  • 25. Broadcasting.mp4
    07:10
  • 26. ASSIGNMENT Bringing it all together.mp4
    02:45
  • 27. SOLUTION Bringing it all together.mp4
    06:18
  • 28. Key Takeaways.mp4
    01:56
  • 29. QUIZ NumPy Primer.html
  • 1. Series Basics.mp4
    08:06
  • 2. Pandas Data Types & Type Conversion.mp4
    06:55
  • 3. ASSIGNMENT Data Types & Type Conversion.mp4
    01:49
  • 4. SOLUTION Data Types & Type Conversion.mp4
    02:28
  • 5. The Series Index & Custom Indices.mp4
    07:06
  • 6. The .iloc Accessor.mp4
    04:33
  • 7. The .loc Accessor.mp4
    07:07
  • 8. Duplicate Index Values & Resetting The Index.mp4
    06:35
  • 9. ASSIGNMENT Accessing Data & Resetting The Index.mp4
    02:05
  • 10. SOLUTION Accessing Data & Resetting The Index.mp4
    02:39
  • 11. Filtering Series & Logical Tests.mp4
    08:22
  • 12. Sorting Series.mp4
    03:45
  • 13. ASSIGNMENT Sorting & Filtering Series.mp4
    00:57
  • 14. SOLUTION Sorting & Filtering Series.mp4
    03:24
  • 15. Numeric Series Operations.mp4
    06:31
  • 16. Text Series Operations.mp4
    07:04
  • 17. ASSIGNMENT Series Operations.mp4
    01:36
  • 18. SOLUTION Series Operations.mp4
    03:55
  • 19. Numerical Series Aggregation.mp4
    05:43
  • 20. Categorical Series Aggregation.mp4
    03:32
  • 21. ASSIGNMENT Series Aggregation.mp4
    00:50
  • 22. SOLUTION Series Aggregation.mp4
    04:20
  • 23. Missing Data Representation in Pandas.mp4
    04:30
  • 24. Identifying Missing Data.mp4
    02:15
  • 25. Fixing Missing Data.mp4
    09:25
  • 26. ASSIGNMENT Missing Data.mp4
    00:45
  • 27. SOLUTION Missing Data.mp4
    01:35
  • 28. Applying Custom Functions to Series.mp4
    04:08
  • 29. Pandas Where (vs. NumPy Where).mp4
    06:03
  • 30. ASSIGNMENT Apply & Where.mp4
    01:09
  • 31. SOLUTION Apply & Where.mp4
    04:37
  • 32. Key Takeaways.mp4
    01:24
  • 33. QUIZ Pandas Series.html
  • 1. DataFrame Basics.mp4
    04:20
  • 2. Creating a DataFrame.mp4
    04:59
  • 3. ASSIGNMENT DataFrame Basics.mp4
    00:53
  • 4. SOLUTION DataFrame Basics.mp4
    02:02
  • 5. Exploring DataFrames Heads, Tails & Sample.mp4
    03:35
  • 6. Exploring DataFrames Info & Describe.mp4
    08:29
  • 7. ASSIGNMENT Exploring a DataFrame.mp4
    00:59
  • 8. SOLUTION Exploring a DataFrame.mp4
    04:03
  • 9. Accessing DataFrame Columns.mp4
    04:53
  • 10. Accessing DataFrame Data with .iloc & .loc.mp4
    06:09
  • 11. ASSIGNMENT Accessing DataFrame Data.mp4
    01:18
  • 12. SOLUTION Accessing DataFrame Data.mp4
    03:23
  • 13. Dropping Columns & Rows.mp4
    05:58
  • 14. Identifying & Dropping Duplicates.mp4
    07:01
  • 15. ASSIGNMENT Dropping Data.mp4
    01:01
  • 16. SOLUTION Dropping Data.mp4
    02:40
  • 17. Missing Data.mp4
    03:17
  • 18. ASSIGNMENT Missing Data.mp4
    00:51
  • 19. SOLUTION Missing Data.mp4
    02:14
  • 20. Filtering DataFrames.mp4
    04:31
  • 21. PRO TIP The Query Method.mp4
    04:17
  • 22. ASSIGNMENT Filtering DataFrames.mp4
    01:51
  • 23. SOLUTION Filtering DataFrames.mp4
    06:20
  • 24. Sorting DataFrames.mp4
    06:56
  • 25. ASSIGNMENT Sorting DataFrames.mp4
    00:45
  • 26. SOLUTION Sorting DataFrames.mp4
    02:50
  • 27. Renaming & Reordering Columns.mp4
    03:10
  • 28. ASSIGNMENT Renaming & Reordering Columns.mp4
    00:55
  • 29. SOLUTION Renaming & Reordering Columns.mp4
    03:18
  • 30. Arithmetic & Boolean Column Creation.mp4
    06:25
  • 31. ASSIGNMENT Arithmetic & Boolean Columns.mp4
    01:40
  • 32. SOLUTION Arithmetic & Boolean Columns.mp4
    04:02
  • 33. PRO TIP Advanced Conditional Columns with Select.mp4
    06:01
  • 34. ASSIGNMENT The Select Function.mp4
    01:47
  • 35. SOLUTION The Select Function.mp4
    03:34
  • 36. The Map Method.mp4
    04:24
  • 37. PRO TIP Multiple Column Creation with Assign.mp4
    08:20
  • 38. ASSIGNMENT Map & Assign.mp4
    01:24
  • 39. SOLUTION Map & Assign.mp4
    02:40
  • 40. The Categorical Data Type.mp4
    05:33
  • 41. Type Conversion.mp4
    01:37
  • 42. PRO TIP Memory Usage & DataTypes.mp4
    06:02
  • 43. PRO TIP Downcasting Numeric Data Types.mp4
    04:58
  • 44. ASSIGNMENT DataFrame DataTypes.mp4
    01:24
  • 45. SOLUTION DataFrame DataTypes.mp4
    03:19
  • 46. Key Takeways.mp4
    01:33
  • 47. QUIZ Intro to DataFrames.html
  • 1. Basic Aggregations.mp4
    04:16
  • 2. The Groupby Method.mp4
    04:32
  • 3. ASSIGNMENT Groupby.mp4
    01:18
  • 4. SOLUTION Groupby.mp4
    02:11
  • 5. Grouping By Multiple Columns.mp4
    04:43
  • 6. ASSIGNMENT Grouping By Multiple Columns.mp4
    01:09
  • 7. SOLUTION Grouping By Multiple Columns.mp4
    03:00
  • 8. Multi-Index DataFrames.mp4
    07:41
  • 9. Modifying Multi-Indices.mp4
    04:27
  • 10. ASSIGNMENT Multi-Index DataFrames.mp4
    01:18
  • 11. SOLUTION Multi-Index DataFrames.mp4
    04:02
  • 12. The Agg Method & Named Aggregations.mp4
    07:22
  • 13. ASSIGNMENT The Agg Method.mp4
    01:22
  • 14. SOLUTION The Agg Method.mp4
    03:01
  • 15. PRO TIP Transforming DataFrames.mp4
    06:53
  • 16. ASSIGNMENT Transforming a DataFrame.mp4
    01:18
  • 17. SOLUTION Transforming a DataFrame.mp4
    04:29
  • 18. Pivot Tables in Pandas.mp4
    06:40
  • 19. Multiple Aggregation Pivot Tables.mp4
    02:59
  • 20. PRO TIP Pivot Table Heatmaps.mp4
    04:34
  • 21. Melting DataFrames.mp4
    06:28
  • 22. ASSIGNMENT Pivot & Melt.mp4
    01:04
  • 23. SOLUTION Pivot & Melt.mp4
    05:41
  • 24. Key Takeaways.mp4
    01:53
  • 25. QUIZ Aggregating & Reshaping DataFrames.html
  • 1. The matplotlib API & The .plot() Method.mp4
    09:34
  • 2. ASSIGNMENT Basic Line Chart.mp4
    00:50
  • 3. SOLUTION Basic Line Chart.mp4
    03:09
  • 4. Chart Titles.mp4
    03:31
  • 5. Chart Colors.mp4
    05:13
  • 6. Line Styles.mp4
    02:01
  • 7. Chart Legends & Gridlines.mp4
    03:53
  • 8. Chart Styles.mp4
    04:08
  • 9. ASSIGNMENT Stylized Line Chart.mp4
    01:11
  • 10. SOLUTION Stylized Line Chart.mp4
    01:21
  • 11. Subplots & Figure Size.mp4
    05:29
  • 12. ASSIGNMENT Subplots.mp4
    01:33
  • 13. SOLUTION Subplots.mp4
    02:59
  • 14. Bar Charts.mp4
    06:17
  • 15. Grouped & Stacked Bar Charts.mp4
    05:12
  • 16. ASSIGNMENT Bar Charts.mp4
    01:11
  • 17. SOLUTION Bar Charts.mp4
    02:19
  • 18. Pie Charts & Scatterplots.mp4
    06:54
  • 19. ASSIGNMENT Scatterplots.mp4
    01:00
  • 20. SOLUTION Scatterplots.mp4
    02:09
  • 21. Histograms.mp4
    03:47
  • 22. ASSIGNMENT Histograms.mp4
    00:33
  • 23. SOLUTION Histograms.mp4
    01:18
  • 24. Saving Plots & Further Exploration.mp4
    03:43
  • 25. Key Takeaways.mp4
    02:12
  • 26. QUIZ Basic Data Visualization in Python.html
  • 1. Mid-Course Project Intro.mp4
    04:45
  • 2. SOLUTION Mid-Course Project.mp4
    15:07
  • 1. Times in Python and Pandas.mp4
    03:17
  • 2. Converting To Datetimes.mp4
    06:16
  • 3. Formatting Dates.mp4
    05:19
  • 4. Date & Time Parts.mp4
    03:04
  • 5. ASSIGNMENT Pandas Datetime Basics.mp4
    01:23
  • 6. SOLUTION Pandas Datetime Basics.mp4
    02:10
  • 7. Time Deltas & Arithmetic.mp4
    06:40
  • 8. ASSIGNMENT Time Deltas.mp4
    01:10
  • 9. SOLUTION Time Deltas.mp4
    01:35
  • 10. Time Series Indices.mp4
    04:01
  • 11. Missing Time Series Data.mp4
    04:50
  • 12. ASSIGNMENT Missing Time Series Data.mp4
    01:44
  • 13. SOLUTION Missing Time Series Data.mp4
    02:13
  • 14. Shifting Time Series.mp4
    03:16
  • 15. PRO TIP DIFF().mp4
    02:55
  • 16. ASSIGNMENT Shift & Diff.mp4
    01:39
  • 17. SOLUTION Shift & Diff.mp4
    02:47
  • 18. Aggregation & Resampling.mp4
    04:07
  • 19. ASSIGNMENT Resampling.mp4
    00:41
  • 20. SOLUTION Resampling.mp4
    01:53
  • 21. Rolling Aggregations.mp4
    04:35
  • 22. ASSIGNMENT Rolling Aggregations.mp4
    00:45
  • 23. SOLUTION Rolling Aggregations.mp4
    00:55
  • 24. Key Takeaways.mp4
    01:37
  • 25. QUIZ Analyzing Dates & Times.html
  • 1. Preprocessing with read csv.mp4
    05:31
  • 2. Column Selection.mp4
    03:49
  • 3. Row Selection & Missing Values.mp4
    04:29
  • 4. Parsing Dates & Data Types.mp4
    03:35
  • 5. PRO TIP Converters.mp4
    02:48
  • 6. ASSIGNMENT Importing Data.mp4
    01:44
  • 7. SOLUTION Importing Data.mp4
    04:19
  • 8. Importing from Text & Excel Files.mp4
    05:21
  • 9. Exporting to Flat Files.mp4
    02:09
  • 10. ASSIGNMENT Importing & Exporting Excel Data.mp4
    01:19
  • 11. SOLUTION Importing & Exporting Excel Data.mp4
    01:54
  • 12. Working With SQL Databases.mp4
    06:22
  • 13. Other Supported File Formats.mp4
    02:34
  • 14. Key Takeaways.mp4
    01:11
  • 15. QUIZ Importing & Exporting Data.html
  • 1. Why Multiple Tables.mp4
    01:58
  • 2. Appending DataFrames.mp4
    04:41
  • 3. ASSIGNMENT Appending DataFrames.mp4
    01:25
  • 4. SOLUTION Appending DataFrames.mp4
    01:38
  • 5. Joining DataFrames.mp4
    02:23
  • 6. Join Types.mp4
    03:45
  • 7. Inner Joins.mp4
    03:22
  • 8. Left Joins.mp4
    04:22
  • 9. ASSIGNMENT Joining DataFrames.mp4
    02:00
  • 10. SOLUTION Joining DataFrames.mp4
    05:41
  • 11. The Join Method.mp4
    01:56
  • 12. Key Takeaways.mp4
    01:17
  • 13. QUIZ Joining DataFrames.html
  • 1. Final Project Intro.mp4
    04:09
  • 2. SOLUTION Final Project.mp4
    13:04
  • 1. BONUS LESSON.html
  • Description


    Learn NumPy & Pandas for data science, data analysis & business intelligence, with practical, hands-on Python projects!

    What You'll Learn?


    • Master the essentials of NumPy and Pandas, two of Python's most powerful data analysis packages
    • Learn how to explore, transform, aggregate and join NumPy arrays and Pandas DataFrames
    • Analyze and manipulate dates and times for time intelligence and time-series analysis
    • Visualize raw data using plot methods and common chart options like line charts, bar charts, scatter plots and histograms
    • Import and export flat files, Excel workbooks and SQL database tables using Pandas
    • Build powerful, practical skills for modern analytics and business intelligence

    Who is this for?


  • Analysts or BI professionals looking to learn data analysis with NumPy and Pandas
  • Aspiring data scientists who want to build or strengthen their Python skills
  • Anyone interested in learning one of the most popular open source programming languages in the world
  • Students looking to learn powerful, practical skills with unique, hands-on projects and course demos
  • What You Need to Know?


  • We'll use Anaconda & Jupyter Notebooks (a free, user-friendly coding environment)
  • Familiarity with base Python is strongly recommended, but not a strict prerequisite
  • More details


    Description

    This is a hands-on, project-based course designed to help you master two of the most popular Python packages for data analysis: NumPy and Pandas.


    We'll start with a NumPy primer to introduce arrays and array properties, practice common operations like indexing, slicing, filtering and sorting, and explore important concepts like vectorization and broadcasting.


    From there we'll dive into Pandas, and focus on the essential tools and methods to explore, analyze, aggregate and transform series and dataframes. You'll practice plotting dataframes with charts and graphs, manipulating time-series data, importing and exporting various file types, and combining dataframes using common join methods.


    Throughout the course you'll play the role of Data Analyst for Maven Mega Mart, a large, multinational corporation that operates a chain of retail and grocery stores. Using the Python skills you learn throughout the course, you'll work with members of the Maven Mega Mart team to analyze products, pricing, transactions, and more.


    COURSE OUTLINE:


    • Intro to NumPy & Pandas

      • Introduce NumPy and Pandas, two critical Python libraries that help structure data in arrays & DataFrames and contain built-in functions for data analysis


    • Pandas Series

      • Introduce Pandas Series, the Python equivalent of a column of data, and cover their basic properties, creation, manipulation, and useful functions for analysis


    • Intro to DataFrames

      • Work with Pandas DataFrames, the Python equivalent of an Excel or SQL table, and use them to store, manipulate, and analyze data efficiently


    • Manipulating DataFrames

      • Aggregate & reshape data in DataFrames by grouping columns, performing aggregation calculations, and pivoting & unpivoting data


    • Basic Data Visualization

      • Learn the basics of data visualization in Pandas, and use the plot method to create & customize line charts, bar charts, scatterplots, and histograms


    • MID-COURSE PROJECT

      • Put your skills to the test with a brand new dataset, and use your Python skills to analyze and evaluate a new retailer as a potential acquisition target for Maven MegaMart


    • Analyzing Dates & Times

      • Learn how to work with the datetime data type in Pandas to extract date components, group by dates, and perform time intelligence calculations like moving averages


    • Importing & Exporting Data

      • Read in data from flat files and apply processing steps during import, create DataFrames by querying SQL tables, and write data back out to its source


    • Joining DataFrames

      • Combine multiple DataFrames by joining data from related fields to add new columns, and appending data with the same fields to add new rows


    • FINAL COURSE PROJECT

      • Put the finishing touches on your project by joining a new table, performing time series analysis, optimizing your workflow, and writing out your results


    Join today and get immediate, lifetime access to the following:


    • 13+ hours of high-quality video

    • Python & Pandas PDF ebook (350+ pages)

    • Downloadable project files & solutions

    • Expert support and Q&A forum

    • 30-day Udemy satisfaction guarantee


    If you're a data scientist, BI analyst or data engineer looking to add Pandas to your Python skill set, this course is for you.


    Happy learning!

    -Chris Bruehl (Python Expert & Lead Python Instructor, Maven Analytics)

    __________

    Looking for our full business intelligence stack? Search for "Maven Analytics" to browse our full course library, including Excel, Power BI, MySQL, Tableau and Machine Learning courses!


    See why our courses are among the TOP-RATED on Udemy:


    "Some of the BEST courses I've ever taken. I've studied several programming languages, Excel, VBA and web dev, and Maven is among the very best I've seen!" Russ C.


    "This is my fourth course from Maven Analytics and my fourth 5-star review, so I'm running out of things to say. I wish Maven was in my life earlier!" Tatsiana M.


    "Maven Analytics should become the new standard for all courses taught on Udemy!" Jonah M.

    Who this course is for:

    • Analysts or BI professionals looking to learn data analysis with NumPy and Pandas
    • Aspiring data scientists who want to build or strengthen their Python skills
    • Anyone interested in learning one of the most popular open source programming languages in the world
    • Students looking to learn powerful, practical skills with unique, hands-on projects and course demos

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Maven Analytics
    Maven Analytics
    Instructor's Courses
    Maven Analytics helps individuals and teams build expert-level analytics & business intelligence skills. We've helped more than 1,000,000 students around the world build job-ready skills, master sought-after tools like Excel, SQL, Power BI, Tableau & Python, and build the foundation for a successful career in data. At Maven Analytics, we empower everyday people to change the world with data.
    Chris Bruehl
    Chris Bruehl
    Instructor's Courses
    Chris is a seasoned data scientist, having held Data Science roles in the financial services industry. He was first trained on SAS before falling in love with Python and making it his tool of choice. Chris transitioned from applying data science in the field, to teaching at a top tier data science bootcamp. He is passionate about teaching and is able to break down complex concepts into bite size lessons. He holds a Masters Degree in Analytics from NCSU.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 213
    • duration 13:17:03
    • English subtitles has
    • Release Date 2024/04/13