Companies Home Search Profile

Complete Guide to Generative AI for Data Analysis and Data Science

Focused View

Dan Sullivan

8:03:15

0 View
  • 01 - Getting started.mp4
    00:42
  • 01 - Asking questions.mp4
    09:03
  • 02 - Collecting and obtaining data.mp4
    04:53
  • 03 - Cleaning and preparing data.mp4
    03:18
  • 04 - Analyzing data.mp4
    03:18
  • 05 - Predictive modeling.mp4
    01:27
  • 06 - Machine learning.mp4
    04:11
  • 07 - Interpret the results.mp4
    02:23
  • 01 - Problem-solving.mp4
    04:19
  • 02 - Statistics.mp4
    05:41
  • 03 - Machine learning algorithms.mp4
    03:35
  • 04 - Spreadsheets.mp4
    01:42
  • 05 - Python.mp4
    02:27
  • 06 - SQL and relational databases.mp4
    04:14
  • 07 - Statistics platforms.mp4
    02:37
  • 08 - Machine learning libraries.mp4
    01:59
  • 01 - Quantitative and qualitative data.mp4
    01:45
  • 02 - Discrete vs. continuous data.mp4
    02:03
  • 03 - Categorical data.mp4
    03:08
  • 01 - Measures of central tendency.mp4
    03:23
  • 02 - Measures of spread.mp4
    04:25
  • 03 - Visualizing data distribution.mp4
    02:14
  • 04 - Describing a dataset using generative AI.mp4
    05:02
  • 05 - Challenge Describing data.mp4
    00:50
  • 06 - Solution Describing data.mp4
    03:16
  • 01 - Distributions of data.mp4
    07:27
  • 02 - Visualizing a normal distribution in a spreadsheet.mp4
    03:29
  • 03 - Jupyter Notebook and Colab.mp4
    03:51
  • 04 - Generating a normal distribution.mp4
    06:23
  • 05 - Visualizing a normal distribution in Python.mp4
    04:56
  • 06 - Visualizing a uniform distribution in Python.mp4
    03:00
  • 07 - Visualizing a bimodal distribution in Python.mp4
    05:54
  • 08 - Challenge Distributions of data.mp4
    00:40
  • 09 - Solution Distribution of data.mp4
    04:07
  • 01 - Sampling and large populations.mp4
    06:31
  • 02 - Creating samples.mp4
    06:01
  • 03 - Saving samples to a file.mp4
    02:32
  • 04 - Comparing population to sample statistics.mp4
    04:02
  • 05 - Challenge Sampling data.mp4
    00:34
  • 06 - Solution Sampling data.mp4
    02:34
  • 01 - Inferential statistics.mp4
    04:25
  • 02 - Hypothesis testing methodology.mp4
    04:17
  • 03 - Analyzing customer preferences.mp4
    11:20
  • 04 - Type I and type II errors.mp4
    01:30
  • 05 - ANOVA tests for comparing means.mp4
    01:55
  • 06 - Generating Python scripts for ANOVA.mp4
    03:45
  • 07 - Testing independence of categorical variables.mp4
    01:53
  • 08 - Generating Python Scripts for Chi-squared tests.mp4
    03:33
  • 09 - Correlation analysis.mp4
    07:12
  • 10 - Testing for normality.mp4
    02:25
  • 11 - Generating Python for testing normality.mp4
    03:46
  • 12 - Generating Python for correlation analysis.mp4
    02:12
  • 13 - Challenge Making inferences from data.mp4
    00:24
  • 14 - Solution Making inferences from data.mp4
    03:17
  • 01 - Visualizing data.mp4
    01:52
  • 02 - Visualizing trends.mp4
    04:43
  • 03 - Visualizing correlations.mp4
    02:34
  • 04 - Visualizing composition.mp4
    03:40
  • 05 - Visualizing distributions.mp4
    02:53
  • 06 - Challenge Visualizing data.mp4
    00:33
  • 07 - Solution Visualizing data.mp4
    02:17
  • 01 - Linear regression.mp4
    07:44
  • 02 - Evaluating linear regression models.mp4
    02:37
  • 03 - Visualizing sales data.mp4
    01:56
  • 04 - Building a linear regression model.mp4
    04:16
  • 05 - Evaluating a sales linear regression model.mp4
    02:46
  • 06 - Challenge Building a regression model.mp4
    00:48
  • 07 - Solution Building a regression model.mp4
    04:32
  • 01 - Data files.mp4
    04:09
  • 02 - Using spreadsheets with CSV files.mp4
    02:43
  • 03 - Reviewing an example JSON file.mp4
    04:29
  • 04 - Using jq with JSON files.mp4
    06:23
  • 05 - Generating jq commands using AI.mp4
    06:01
  • 06 - Dataframes in Python.mp4
    08:20
  • 07 - Loading CSV data into dataframes.mp4
    03:44
  • 08 - Loading JSON into dataframes.mp4
    06:17
  • 09 - Inspecting dataframes.mp4
    04:12
  • 10 - Data quality and data cleansing.mp4
    06:28
  • 11 - Using AI for data quality and data cleansing.mp4
    05:06
  • 12 - Challenge Missing data.mp4
    00:35
  • 13 - Solution Missing data.mp4
    04:00
  • 01 - Relational databases.mp4
    15:15
  • 02 - NoSQL databases.mp4
    10:21
  • 03 - Extraction, transformation, and loading data into databases.mp4
    05:46
  • 04 - Introduction to SQL.mp4
    05:45
  • 05 - Creating tables and inserting data.mp4
    08:02
  • 06 - Querying data with SQL.mp4
    10:28
  • 07 - Joining data with SQL.mp4
    06:57
  • 08 - Descriptiive statistics in SQL.mp4
    04:55
  • 09 - Generating synthetic data sets for a relational database.mp4
    07:12
  • 10 - Generating a star schema, synthetic data, and queries.mp4
    03:41
  • 11 - Challenge Generate a relational data model.mp4
    01:12
  • 12 - Solution Generate a relational data model.mp4
    04:32
  • 01 - Supervised and unsupervised learning.mp4
    12:27
  • 02 - Classification.mp4
    06:41
  • 03 - Regression.mp4
    02:56
  • 04 - Clustering.mp4
    03:20
  • 05 - Machine learning lifecycle.mp4
    05:37
  • 06 - Feature engineering.mp4
    08:04
  • 07 - Model evaluation.mp4
    06:54
  • 01 - Simple classification model.mp4
    08:34
  • 02 - Handling missing data.mp4
    05:00
  • 03 - Comparing multiple algorithms.mp4
    06:43
  • 04 - Classification with neural networks.mp4
    14:22
  • 05 - Hyperparameter tuning.mp4
    06:32
  • 06 - Evaluating feature importance.mp4
    02:24
  • 07 - Challenge Predicting consumer intent.mp4
    00:41
  • 08 - Solution Predicting consumer intent.mp4
    07:26
  • Description


    GenAI has the potential to enable many more people to work with and analyze data, but to succeed, you need a solid foundation in data management, statistics, and machine learning. This course provides that foundation. Instructor Dan Sullivan teaches how to break down business questions and data science questions into components that can be addressed programmatically and then how to use genAI to create programs and scripts to implement a solution. This course focuses on the three pillars needed to be a successful data analyst or data scientist: problem solving skills, an understanding of statistics and machine learning, and practical experience with data management procedures.

    More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Dan Sullivan
    Dan Sullivan
    Instructor's Courses
    Cloud and data architect with extensive experience in data architecture, data science, machine learning, stream processing, and cloud architecture. Capable of starting with vague initiatives and formulating precise objectives, strategies, and implementation plans. Regularly works with C-level and VP executives while also mentoring and coaching software engineers. Adapts well to unforeseen challenges. He is the author of the official Google Cloud study guides for the Professional Architect, Professional Data Engineer, and Associate Cloud Engineer.
    LinkedIn Learning is an American online learning provider. It provides video courses taught by industry experts in software, creative, and business skills. It is a subsidiary of LinkedIn. All the courses on LinkedIn fall into four categories: Business, Creative, Technology and Certifications. It was founded in 1995 by Lynda Weinman as Lynda.com before being acquired by LinkedIn in 2015. Microsoft acquired LinkedIn in December 2016.
    • language english
    • Training sessions 108
    • duration 8:03:15
    • English subtitles has
    • Release Date 2025/01/16