Companies Home Search Profile

Big Data with Apache Spark 3 and Python: From Zero to Expert

Focused View

Data Bootcamp

4:17:50

184 View
  • 1. How to get the most out of this course.html
  • 2.1 Big Data with Apache Spark 3 and Python From Zero to Expert.pdf
  • 2.2 Entrega.rar
  • 2. Course material.html
  • 3. Spark Fundamentals.mp4
    01:37
  • 4. Apache Spark execution.mp4
    01:57
  • 5. Apache Spark ecosystem and documentation.mp4
    04:59
  • 6. PySpark operation, cluster administration and architecture.mp4
    03:38
  • 1. Download Spark, Java and Anaconda.mp4
    03:19
  • 2. Setting environment variables.mp4
    03:32
  • 3. Running Spark in Prompt and Jupyter Notebook.mp4
    03:12
  • 4. Fixing common problems.html
  • 1.1 PySpark RDDs.pdf
  • 1. PySpark Cheat Sheet.html
  • 2. RDD Fundamentals.mp4
    03:19
  • 3. Initialize PySpark with SparkSession and the SparkContext.mp4
    04:06
  • 4. Transformations in RDDs like map, filter, flatMap and distinct.mp4
    02:25
  • 5. Transformations in RDDs like reduceByKey, groupByKey or sortByKey.mp4
    04:36
  • 6. RDD actions such as count, first, collect or take.mp4
    02:43
  • 1.1 PySpark Sql Basics Cheat Sheet.pdf
  • 1. PySpark Cheatsheet SQL.html
  • 2. Fundamentals and advantages of DataFrames.mp4
    03:27
  • 3. Characteristics of DataFrames and data sources.mp4
    02:24
  • 4. Creating DataFrames in PySpark.mp4
    03:07
  • 5. Operations with PySpark DataFrames.mp4
    04:42
  • 6. Different types of joins in DataFrames.mp4
    02:43
  • 7. SQL queries in PySpark.mp4
    02:26
  • 8. Advanced features for loading and exporting data in PySpark.mp4
    03:35
  • 1. Funciones avanzadas y optimizacion del rendimiento.mp4
    03:39
  • 2. BroadCast Join and caching.mp4
    04:49
  • 3. User Defined Functions (UDF) and advanced SQL functions.mp4
    04:36
  • 4. Handling and imputation of missing values.mp4
    02:51
  • 5. Partitioning and catalog of APIs.mp4
    04:32
  • 6. Practical Exercise Advanced Analytics with Apache Spark.html
  • 1. Introduction to advanced analytics with Spark.mp4
    02:15
  • 2. Data loading and data schema modification.mp4
    04:03
  • 3. Inspect data in PySpark.mp4
    02:46
  • 4. Column transformation in PySpark.mp4
    01:58
  • 5. Advanced missing data imputation in PySpark.mp4
    05:32
  • 6. Data selection with PySpark and PySpark SQL.mp4
    06:23
  • 7. Data visualization and graph generation in PySpark.mp4
    05:17
  • 8. Persist data with PySpark.mp4
    01:50
  • 1. Spark Koalas Fundamentals.mp4
    02:39
  • 2. Feature Engineering with Koalas.mp4
    03:51
  • 3. Creating DataFrames with Koalas.mp4
    04:10
  • 4. Data manipulation and DataFrames with Koalas.mp4
    02:08
  • 5. Working with missing data in Koalas.mp4
    02:24
  • 6. Data visualization and graph generation with Koalas.mp4
    03:07
  • 7. Importing and exporting data with Koalas.mp4
    01:51
  • 8. Hands-on exercise with Koalas.html
  • 1. Fundamentals of Machine Learning with Spark.mp4
    03:04
  • 2. Spark Machine Learning Components.mp4
    02:08
  • 3. Stages of developing a Machine Learning model.mp4
    05:22
  • 4. Import data and exploratory data analysis (EDA).mp4
    08:58
  • 5. Data preprocessing with PySpark.mp4
    05:04
  • 6. Training the machine learning model in PySpark.mp4
    03:57
  • 7. Evaluation of the Machine Learning model.mp4
    02:28
  • 1. Practical example of counting words with Spark Streaming.mp4
    04:18
  • 2. Spark Streaming Configurations Output Modes and Operation Types.mp4
    03:05
  • 3. Time Window Operations in Spark Streaming.mp4
    03:54
  • 4. Spark Streaming Capabilities.mp4
    01:20
  • 5. Use case Real-time bank fraud detection (Part I).mp4
    03:56
  • 6. Use case Real-time bank fraud detection (Part II).mp4
    04:55
  • 7. Spark Streaming Exercise.html
  • 1. Introduction to Databricks.mp4
    03:33
  • 2. Databricks Terminology and Databricks Community.mp4
    04:03
  • 3. Delta Lake.mp4
    01:55
  • 4. Create a free Databricks account.mp4
    01:57
  • 1. Introduction to the Databricks environment.mp4
    10:15
  • 2. Getting started with Databricks.mp4
    07:30
  • 3. Creating and saving DataFrames in Databricks.mp4
    04:40
  • 4. Data transformation and visualization in Databricks.mp4
    05:51
  • 5. Use case Population data analytics.mp4
    07:50
  • 1. Import and exploratory analysis of the data.mp4
    04:33
  • 2. Variable preprocessing with PySpark and Databricks.mp4
    05:21
  • 3. Definition of the Machine Learning model and development of the Pipeline.mp4
    04:09
  • 4. Model evaluation with PySpark and Databricks.mp4
    04:28
  • 5. Hyperparameter tuning and registration in MLFlow.mp4
    03:19
  • 6. Predictions with new data and visualization of the results.mp4
    03:29
  • 1.1 PySpark_Cheat_Sheet_Python.pdf
  • 1. Additional Resources Complete Guide to Spark.html
  • Description


    Complete bootcamp to learn PySpark, Databricks, Spark Machine Learning, Advanced Analytics, Koalas and Spark Streaming

    What You'll Learn?


    • Introduction to Big Data and Apache Spark Fundamentals
    • Spark RDDs, Dataframes and Spark Koalas
    • Machine Learning with Spark
    • Advanced features with Apache Spark
    • Advanced analytics and data visualization toold
    • Spark in cloud with Azure and Databricks
    • Spark Streaming and GraphX
    • Databricks
    • Machine learning in Databricks

    Who is this for?


  • Anyone who wants to learn advanced big data skills
  • Anyone who knows Python and wants to adquire Big Data processing skills
  • Anyone that want to make a career as a data engineer, data analyst or data scientist
  • Anyone interested in learning Apache Spark and Pyspark for Big Data analysis
  • Anyone that want to learn cutting-edge technology in Big Data
  • More details


    Description

    If you are looking for a hands-on, complete and advanced course to learn Big Data with Apache Spark and Python, you have come to the right place.


    This course is designed to cover the complete skillset of Apache Spark, from RDDs, Spark SQL, Dataframes, and Spark Streaming, to Machine Learning with Spark ML, Advanced Analytics, data visualization, Spark Koalas, and Databricks.


    With lessons, downloadable study guides, hands-on exercises, and real-world use cases, this is the only course you'll need to learn Apache Spark.

    Apache Spark has become the reference tool for Big Data, surpassing Hadoop MapReduce. Spark works up to 100 times faster than Hadoop MapReduce and has a complete ecosystem of functionalities for machine learning and data analytics. This makes Apache Spark one of the most in-demand skills for data engineers, data scientists, etc. Big Data is one of the most valuable skills today. So this course will teach you everything you need to position yourself in the Big Data job market.

    In this course we will teach you the complete skillset of Apache Spark and PySpark. Starting from the basics to the most advanced features. We will use visual presentations in Power Point, sharing clear explanations and useful professional advice.


    This course has the following sections:

    • Introduction to big data and fundamentals of Apache Spark

    • Installation of Apache Spark and libraries such as Anaconda, Java, etc.

    • Spark RDDs

    • Spark Dataframes

    • Advanced features with Apache Spark

    • Advanced analytics and data visualization

    • Spark Koalas

    • Machine Learning with Spark

    • Spark Streaming

    • Spark GraphX

    • Databricks

    • Spark in the cloud (Azure)


    If you're ready to sharpen your skills, increase your career opportunities, and become a Big Data expert, join today and get immediate and lifetime access to:

    • Complete guide to Apache Spark (PDF e-book)

    • Downloadable Spark project files and code

    • Hands-on exercises and quizzes

    • Spark resources like: Cheatsheets and Summaries

    • 1 to 1 expert support

    • Course question and answer forum

    • 30 days money back guarantee



    See you there!

    Who this course is for:

    • Anyone who wants to learn advanced big data skills
    • Anyone who knows Python and wants to adquire Big Data processing skills
    • Anyone that want to make a career as a data engineer, data analyst or data scientist
    • Anyone interested in learning Apache Spark and Pyspark for Big Data analysis
    • Anyone that want to learn cutting-edge technology in Big Data

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Data Bootcamp
    Data Bootcamp
    Instructor's Courses
    Data Bootcamp transforma a los profesionales en expertos de datos al optimizar, simplificar y personalizar la experiencia de aprendizaje en línea.Desde hace años hemos ayudado a estudiantes y equipos en más de 150 países a desarrollar las habilidades de análisis e inteligencia empresarial más buscadas, a través de cursos, evaluaciones de habilidades, rutas de aprendizaje y capacitación empresarial.Aprender nuevas habilidades en el sector del dato es fácil. Data Bootcamp será tu equipo personal de instructores, expertos y mentores que te ayudarán en el proceso de aprendizaje y a desarrollar las habilidades profesionales más demandadas.Nuestro equipo se compone por expertos reconocidos en el campo del data anytics, MVPs, MCTs y expertos certificados de Microsoft.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 67
    • duration 4:17:50
    • Release Date 2022/12/13