Companies Home Search Profile

Bayesian Optimization in Action, Video Edition

Focused View

11:55:40

289 View
  • 001. Chapter 1. Introduction to Bayesian optimization.mp4
    15:49
  • 002. Chapter 1. Introducing Bayesian optimization.mp4
    27:30
  • 003. Chapter 1. What will you learn in this book.mp4
    01:34
  • 004. Chapter 1. Summary.mp4
    01:41
  • 005. Part 1. Modeling with Gaussian processes.mp4
    01:32
  • 006. Chapter 2. Gaussian processes as distributions over functions.mp4
    09:04
  • 007. Chapter 2. Modeling correlations with multivariate Gaussian distributions and Bayesian updates.mp4
    19:25
  • 008. Chapter 2. Going from a finite to an infinite Gaussian.mp4
    09:09
  • 009. Chapter 2. Implementing GPs in Python.mp4
    21:40
  • 010. Chapter 2. Exercise.mp4
    02:22
  • 011. Chapter 2. Summary.mp4
    01:55
  • 012. Chapter 3. Customizing a Gaussian process with the mean and covariance functions.mp4
    10:19
  • 013. Chapter 3. Incorporating what you already know into a GP.mp4
    03:20
  • 014. Chapter 3. Defining the functional behavior with the mean function.mp4
    21:51
  • 015. Chapter 3. Defining variability and smoothness with the covariance function.mp4
    18:24
  • 016. Chapter 3. Exercise.mp4
    02:27
  • 017. Chapter 3. Summary.mp4
    01:44
  • 018. Part 2. Making decisions with Bayesian optimization.mp4
    02:35
  • 019. Chapter 4. Refining the best result with improvement-based policies.mp4
    24:06
  • 020. Chapter 4. Finding improvement in BayesOpt.mp4
    25:54
  • 021. Chapter 4. Optimizing the expected value of improvement.mp4
    07:35
  • 022. Chapter 4. Exercises.mp4
    08:00
  • 023. Chapter 4. Summary.mp4
    02:16
  • 024. Chapter 5. Exploring the search space with bandit-style policies.mp4
    14:33
  • 025. Chapter 5. Being optimistic under uncertainty with the Upper Confidence Bound policy.mp4
    16:51
  • 026. Chapter 5. Smart sampling with the Thompson sampling policy.mp4
    18:23
  • 027. Chapter 5. Exercises.mp4
    04:46
  • 028. Chapter 5. Summary.mp4
    02:20
  • 029. Chapter 6. Using information theory with entropy-based policies.mp4
    28:58
  • 030. Chapter 6. Entropy search in BayesOpt.mp4
    13:10
  • 031. Chapter 6. Exercises.mp4
    06:38
  • 032. Chapter 6. Summary.mp4
    02:06
  • 033. Part 3. Extending Bayesian optimization to specialized settings.mp4
    03:18
  • 034. Chapter 7. Maximizing throughput with batch optimization.mp4
    13:25
  • 035. Chapter 7. Computing the improvement and upper confidence bound of a batch of points.mp4
    27:32
  • 036. Chapter 7. Exercise 1 Extending TS to the batch setting via resampling.mp4
    02:55
  • 037. Chapter 7. Computing the value of a batch of points using information theory.mp4
    11:24
  • 038. Chapter 7. Exercise 2 Optimizing airplane designs.mp4
    06:36
  • 039. Chapter 7. Summary.mp4
    03:18
  • 040. Chapter 8. Satisfying extra constraints with constrained optimization.mp4
    13:41
  • 041. Chapter 8. Constraint-aware decision-making in BayesOpt.mp4
    12:35
  • 042. Chapter 8. Exercise 1 Manual computation of constrained EI.mp4
    03:29
  • 043. Chapter 8. Implementing constrained EI with BoTorch.mp4
    08:49
  • 044. Chapter 8. Exercise 2 Constrained optimization of airplane design.mp4
    02:30
  • 045. Chapter 8. Summary.mp4
    01:59
  • 046. Chapter 9. Balancing utility and cost with multifidelity optimization.mp4
    13:02
  • 047. Chapter 9. Multifidelity modeling with GPs.mp4
    20:38
  • 048. Chapter 9. Balancing information and cost in multifidelity optimization.mp4
    17:54
  • 049. Chapter 9. Measuring performance in multifidelity optimization.mp4
    09:30
  • 050. Chapter 9. Exercise 1 Visualizing average performance in multifidelity optimization.mp4
    04:46
  • 051. Chapter 9. Exercise 2 Multifidelity optimization with multiple low-fidelity approximations.mp4
    04:12
  • 052. Chapter 9. Summary.mp4
    03:51
  • 053. Chapter 10. Learning from pairwise comparisons with preference optimization.mp4
    13:23
  • 054. Chapter 10. Formulating a preference optimization problem and formatting pairwise comparison data.mp4
    08:36
  • 055. Chapter 10. Training a preference-based GP.mp4
    09:29
  • 056. Chapter 10. Preference optimization by playing king of the hill.mp4
    08:13
  • 057. Chapter 10. Summary.mp4
    02:12
  • 058. Chapter 11. Optimizing multiple objectives at the same time.mp4
    07:02
  • 059. Chapter 11. Finding the boundary of the most optimal data points.mp4
    18:09
  • 060. Chapter 11. Seeking to improve the optimal data boundary.mp4
    12:51
  • 061. Chapter 11. Exercise Multiobjective optimization of airplane design.mp4
    02:53
  • 062. Chapter 11. Summary.mp4
    02:18
  • 063. Part 4. Special Gaussian process models.mp4
    01:22
  • 064. Chapter 12. Scaling Gaussian processes to large datasets.mp4
    16:11
  • 065. Chapter 12. Automatically choosing representative points from a large dataset.mp4
    22:32
  • 066. Chapter 12. Optimizing better by accounting for the geometry of the loss surface.mp4
    09:48
  • 067. Chapter 12. Exercise.mp4
    03:53
  • 068. Chapter 12. Summary.mp4
    02:31
  • 069. Chapter 13. Combining Gaussian processes with neural networks.mp4
    09:10
  • 070. Chapter 13. Capturing similarity within structured data.mp4
    13:38
  • 071. Chapter 13. Using neural networks to process complex structured data.mp4
    16:03
  • 072. Chapter 13. Summary.mp4
    02:05
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 72
    • duration 11:55:40
    • Release Date 2024/06/14