Companies Home Search Profile

Basics to Advanced: Azure Synapse Analytics Hands-On Project

Focused View

Shanmukh Sattiraju

18:39:55

35 View
  • 1. Introduction.mp4
    06:31
  • 2. Project Architecture.mp4
    05:25
  • 3.1 Synapse Project Deck.pdf
  • 3. Course Slides.html
  • 1. Section Introduction.mp4
    00:42
  • 2. Need of separate Analytical system.mp4
    04:54
  • 3. OLAP vs OLTP.mp4
    04:02
  • 4. A typical Datawarehouse.mp4
    02:04
  • 5. Datalake Introduction.mp4
    01:54
  • 6. Modern datawarehouse and its problem.mp4
    08:06
  • 7. The solution - Azure Synapse Analytics and its Components.mp4
    04:58
  • 8. Azure Synapse Analytics - A Single stop solution.mp4
    10:18
  • 9. Section Summary.mp4
    00:36
  • 1. Section Introduction.mp4
    00:40
  • 2. Creating a resource group in Azure.mp4
    02:45
  • 3. Create Azure Synapse Analytics Service.mp4
    06:50
  • 4. Exploring Azure Synapse Analytics.mp4
    07:50
  • 5. Understanding the dataset.mp4
    03:51
  • 1. Section Introduction.mp4
    01:26
  • 2. Serverless SQL Pool - Introduction.mp4
    03:24
  • 3. Serverless SQL Pool - Architecture.mp4
    03:57
  • 4. Serverless SQL Pool- Benefits and Pricing.mp4
    05:27
  • 5.1 Unemployment.csv
  • 5.2 unemployment.zip
  • 5. Uploading files into Azure Datalake Storage.mp4
    06:36
  • 6.1 1 data exploration.zip
  • 6.2 Openrowset.html
  • 6. Initial Data Exploration.mp4
    14:36
  • 7. How to import SQL scripts or ipynb notebooks to Azure Synapse.mp4
    02:58
  • 8.1 2 fixing collation warning.zip
  • 8. Fixing the Collation warning.mp4
    09:39
  • 9.1 3 creating external datasource.zip
  • 9. Creating External datasource.mp4
    09:13
  • 10.1 4 creating database scoped credential sas.zip
  • 10. Creating database scoped credential Using SAS.mp4
    12:23
  • 11.1 5 creating database scoped credential mi.zip
  • 11. Creating Database scoped cred using MI.mp4
    08:11
  • 12. Deleting existing data sources for cleanup.mp4
    03:51
  • 13. Creating an external file format - Demo.mp4
    05:36
  • 14.1 6 create external file format.zip
  • 14. Creating an External File Format - Practical.mp4
    02:11
  • 15. Creating External DataSource for Refined container.mp4
    01:57
  • 16.1 7 creating external table.zip
  • 16. Creating an External Table.mp4
    12:47
  • 17. End of section.mp4
    00:39
  • 1. Section Introduction.mp4
    00:56
  • 2. Big Data Approach.mp4
    05:51
  • 3. Understanding Hadoop Yarn- Cluster Manager.mp4
    05:26
  • 4. Understanding Hadoop - HDFS.mp4
    04:19
  • 5. Understanding Hadoop - MapReduce Distributed Computing.mp4
    07:11
  • 1. Section Introduction.mp4
    00:49
  • 2. Drawbacks of MapReduce Framework.mp4
    03:24
  • 3. Emergence of Spark.mp4
    04:51
  • 1. Section Introduction.mp4
    00:51
  • 2. Spark EcoSystem.mp4
    06:18
  • 3. Difference between Hadoop & Spark.mp4
    03:37
  • 4. Spark Architecture.mp4
    02:40
  • 5. Creating a Spark Pool & its benefits.mp4
    09:02
  • 6. RDD Overview.mp4
    02:48
  • 7. Functions Lambda, Map and Filter - Overview.mp4
    04:19
  • 8.1 10 understanding rdd in practical.zip
  • 8. Understanding RDD in practical.mp4
    10:53
  • 9. RDD- Lazy loading - Transformations and Actions.mp4
    06:40
  • 10. What is RDD Lineage.mp4
    05:07
  • 11. RDD - Word count program - Demo.mp4
    07:45
  • 12.1 14 word count pyspark program practical.zip
  • 12.2 tonystark.txt
  • 12. RDD - Word count - PySpark Program - Practical.mp4
    11:40
  • 13. Optimization - ReduceByKey vs GroupByKey Explanation.mp4
    07:36
  • 14. RDD - Understanding about Jobs in spark Practical.mp4
    03:44
  • 15. RDD - Understanding Narrow and Wide Transformations.mp4
    04:40
  • 16. RDD- Understanding Stages - Practical.mp4
    06:48
  • 17.1 18 rdd understanding tasks practical.zip
  • 17. RDD- Understanding Tasks Practical.mp4
    06:13
  • 18. Understand DAG , RDD Lineage and Differences.mp4
    08:06
  • 19. Spark Higher level APIs Intro.mp4
    03:53
  • 20.1 2023-01-15 213417.413947.csv
  • 20.2 2023-01-15 213417.413947.zip
  • 20.3 2023-01-15 213417.413947.zip
  • 20.4 dataframe practical.zip
  • 20. Synapse Notebook - Creating dataframes practical.mp4
    16:11
  • 1. Introduction for PySpark Transformations.mp4
    01:41
  • 2.1 1 walkthough on notebook.zip
  • 2. Walkthrough on Notebook , Markdown cells.mp4
    08:38
  • 3.1 Databricks login.html
  • 3.2 Databricks Signup.html
  • 3. Using Free Databricks Community Edition to practise and Save Costs.mp4
    06:33
  • 4.1 2 display and show functions.zip
  • 4. Display and show Functions.mp4
    10:49
  • 5. Stop Spark Session when not in use.mp4
    01:11
  • 6.1 3 select and selectexpr.zip
  • 6. Select and SelectExpr.mp4
    13:52
  • 7.1 4 filter function.zip
  • 7. Filter Function.mp4
    13:36
  • 8. Organizing notebooks into a folder.mp4
    02:04
  • 1.1 1 understanding fillna and nadotfill.zip
  • 1. Understanding fillna and na.fill.mp4
    09:05
  • 2.1 2 handling duplicates and dropna.zip
  • 2. Identifying duplicates using Aggregations.mp4
    10:25
  • 3.1 2 handling duplicates and dropna.zip
  • 3. Handling Duplicates using dropna.mp4
    09:18
  • 4. Organising notebooks into a folder.mp4
    00:34
  • 5. Transformations summary of this section.mp4
    01:20
  • 1.1 3 data transformation and manipulation.zip
  • 1. withColumn to Create Update columns.mp4
    13:49
  • 2.1 3 data transformation and manipulation.zip
  • 2. Transforming and updating column withColumnRenamed.mp4
    06:56
  • 1. What is MSSpark Utilities.mp4
    02:27
  • 2.1 1 mssparkutils env.zip
  • 2. MSSpark Utils - Env utils.mp4
    04:39
  • 3. What is mount point.mp4
    03:16
  • 4.1 2 msspark utils fs mount.zip
  • 4. Creating and accessing mount point in Notebook.mp4
    10:26
  • 5.1 3 msspark utils fs utils.zip
  • 5. All File System Utils.mp4
    14:00
  • 6.1 4 a notebook parent.zip
  • 6. Notebook Utils - Exit command.mp4
    04:32
  • 7.1 Synapse Quotas.html
  • 7. Creating another spark pool.mp4
    07:46
  • 8.1 To Submit ticket for quota increase.html
  • 8. Procedure to increase vCores request (optional).mp4
    01:32
  • 9.1 4 a notebook child.zip
  • 9.2 4 a notebook parent.zip
  • 9. Calling notebook from another notebook.mp4
    02:52
  • 10.1 4 a notebook parent para.zip
  • 10. Calling notebook from another using runtime parameters.mp4
    07:33
  • 11.1 5 magic commands.zip
  • 11. Magic commands.mp4
    06:05
  • 12.1 FAQ.html
  • 12. Attaching two notebooks to a single spark pool.mp4
    07:39
  • 13.1 6 1 accessing mount configuration.zip
  • 13.2 6 mount configuration.zip
  • 13. Accessing Mount points from another notebook.mp4
    11:19
  • 1.1 1 accessing data using temporary views practical.zip
  • 1. Accessing data using Temporary Views - Practical.mp4
    08:29
  • 2. Lake Database - Overview.mp4
    02:41
  • 3.1 2 creating database in lake database.zip
  • 3. Understanding and creating database in Lake Database.mp4
    10:51
  • 4.1 2 creating database in lake database.zip
  • 4. Using Spark SQL in notebook.mp4
    04:54
  • 5.1 3 managed vs external tables.zip
  • 5. Managed vs External tables in Spark.mp4
    13:50
  • 6. Metadata sharing between Spark pool and Serverless SQL Pool.mp4
    06:38
  • 7. Deleting unwanted folders.mp4
    01:15
  • 1.1 Education and Expected Salary ranges.csv
  • 1.2 Education Details.csv
  • 1.3 Salary Details.csv
  • 1. Uploading required files for Joins.mp4
    02:00
  • 2.1 1 understanding joins and union.zip
  • 2. Python notebooks till Union.html
  • 3. Inner join.mp4
    08:02
  • 4. Left Join.mp4
    02:46
  • 5. Right Join.mp4
    02:24
  • 6. Full outer join.mp4
    02:43
  • 7. Left Semi Join.mp4
    04:02
  • 8. Left anti and Cross Join.mp4
    03:28
  • 9. Union Operation.mp4
    03:10
  • 10.1 2 performing join transformation.zip
  • 10. Performing Join Transformation on Project Dataset.mp4
    05:02
  • 11. Summary of Transformations performed.mp4
    01:01
  • 1. Replace function to change spaces.mp4
    04:44
  • 2.1 1 string manipulation and sorting.zip
  • 2. PySpark Notebook for this section.html
  • 3. Split and concat functions.mp4
    09:21
  • 4. Order by and sort.mp4
    07:30
  • 5. Section Summary.mp4
    01:31
  • 1. Row number function.mp4
    07:54
  • 2.1 1 window functions.zip
  • 2. PySpark Notebook used in this section.html
  • 3. Rank Function.mp4
    04:47
  • 4. Dense Rank function.mp4
    07:25
  • 1. Conversion using cast function.mp4
    09:09
  • 2.1 1 cast and pivoting.zip
  • 2. PySpark Notebook need for casting and pivoting lectures.html
  • 3. Pivot function.mp4
    05:10
  • 4. Unpivot using stack function.mp4
    06:07
  • 5.1 2 to date+function.zip
  • 5.2 Databricks - Datetime Patterns.html
  • 5.3 Microsoft Docs - Date time patterns.html
  • 5.4 Microsoft Docs - Datetime.html
  • 5. Using to date to convert date column.mp4
    08:51
  • 1.1 1 schema definition and management.zip
  • 1. PySpark Notebook used in this lecture.html
  • 2. StructType and StructField - Demo.mp4
    03:05
  • 3. Implementing explicit schema with StructType and StructField.mp4
    13:31
  • 1. User Defined Functions - Demo.mp4
    03:18
  • 2.1 1 udfs.zip
  • 2. Implementing UDFs in Notebook.mp4
    08:48
  • 3.1 1 writing data to processed container.zip
  • 3. Writing transformed data to Processed container.mp4
    03:17
  • 1. Dedicated SQL pool - Demo.mp4
    02:19
  • 2. Dedicated SQL Pool Architecture.mp4
    04:24
  • 3. How distribution takes places based on DWU.mp4
    05:58
  • 4. Factors to consider when choosing dedicated SQL pool.mp4
    02:43
  • 5. Creating Dedicated SQL pool in Synapse.mp4
    03:08
  • 6. Ways to copy data into Dedicated SQL Pool.mp4
    03:47
  • 7.1 1 copy command to get data into dedicated sql pool.zip
  • 7. Copy command to copy to dedicated SQL pool.mp4
    04:55
  • 8. Clustured Column Store index(optional).mp4
    02:02
  • 9. Types of Distributions or Sharing patterns.mp4
    06:52
  • 10. Using Pipeline to Copy to dedicated SQL Pool.mp4
    06:57
  • 1. Section Introduction.mp4
    01:18
  • 2. Installing Power BI Desktop.mp4
    01:20
  • 3. Creating report from Power BI Desktop.mp4
    04:22
  • 4. Creating new user in Azure AD for creating workspace (if using personal account).mp4
    04:31
  • 5. Creating a shared workspace in Power BI.mp4
    03:46
  • 6. Publishing report to Shared Workspace.mp4
    01:32
  • 7. Accessing Power BI from Azure Synapse Analytics.mp4
    04:31
  • 8.1 synapse power bi report.zip
  • 8. Download Power BI .pbix file from here.html
  • 9. Creating Dataset and report from Synapse Analytics.mp4
    06:31
  • 10. Concluding the Power BI Section.mp4
    02:41
  • 11. Summary and end of project implementation.mp4
    02:25
  • 1. Optimisation Section Intro.mp4
    00:56
  • 2.1 cache.csv
  • 2.2 partition.zip
  • 2.3 Unemployment collect.csv
  • 2.4 Unemployment inferschema.csv
  • 2. Uploading required files for Optimisation.mp4
    01:45
  • 3. Spark Optimisation levels.mp4
    02:48
  • 4.1 1 optimization avoid collect.zip
  • 4. Avoid using Collect function.mp4
    07:37
  • 5. Making notebook into particular folder.mp4
    01:22
  • 6.1 2 avoid infer schema.zip
  • 6. Avoid InferSchema.mp4
    09:34
  • 7. Use Cache Persist 1 - Understanding Serialization and DeSerialization.mp4
    06:31
  • 8. Use Cache Persist 2 - How cache or persist will work - Demo.mp4
    09:11
  • 9.1 3 cache.zip
  • 9. Use Cache Persist 3 - Understanding cache practically.mp4
    09:47
  • 10. Use Cache Persist 4 - Persist - What is persist and different storage levels.mp4
    03:59
  • 11.1 4 persist.zip
  • 11.2 storage level notes.zip
  • 11. Use Cache Persist - Notebook for persist with all storage levels.html
  • 12. Use Cache Persist 5 - Persist - MEMORY ONLY.mp4
    17:27
  • 13. Use Cache Persist 6 - Persist - MEMORY AND DISK.mp4
    08:18
  • 14. Use Cache Persist 7 - Persist - MEMORY ONLY SER (Scala Only).mp4
    04:00
  • 15. Use Cache Persist 8 - Persist - MEMORY AND DISK SER ( Scala Only).mp4
    02:57
  • 16. Use Cache Persist 9 - Persist - DISK ONLY.mp4
    05:41
  • 17. Use Cache Persist 10 - Persist - OFF HEAP (Scala Only).mp4
    02:05
  • 18. Use Cache Persist 11 - Persist - MEMORY ONLY 2 (PySpark only).mp4
    02:34
  • 19. Use Partitioning 1 - Understanding partitioning - Demo.mp4
    05:24
  • 20.1 4 paritioning.zip
  • 20. Use Partitioning 2 - Understand partitioning - Practical.mp4
    08:35
  • 21. Repartiton and coalesce 1 - Understanding repartition and coalesce - Demo.mp4
    05:51
  • 22. Repartiton and coalesce 2 - Understanding repartition and coalesce - Practical.mp4
    06:43
  • 23. Broadcast variables 1 - Understanding broadcast variables - Demo.mp4
    06:47
  • 24.1 6 broadcast variables.zip
  • 24. Broadcast variables 2 - Implementing broadcast variables in notebook.mp4
    05:53
  • 25. Use Kryo Serializer.mp4
    03:10
  • 1. Section Introduction.mp4
    00:48
  • 2. Drawbacks of ADLS.mp4
    06:08
  • 3. What is Delta lake.mp4
    02:00
  • 4. Lakehouse Architecture.mp4
    06:21
  • 5.1 SchemaManagementDelta.csv
  • 5. Uploading required file for Delta lake.mp4
    01:32
  • 6.1 1 problems in data lake and creating delta lake.zip
  • 6. Problems with Azure Datalake - Practical.mp4
    08:23
  • 7. Creating a Delta lake.mp4
    03:56
  • 8. Understanding Delta format.mp4
    04:50
  • 9.1 2 understanding transaction log file.zip
  • 9. Contents of Transaction Log or Delta log file - Practical.mp4
    18:15
  • 10. Contents of a transaction log demo.mp4
    03:44
  • 11.1 3 creating delta tables using sql by path.zip
  • 11. Creating delta table by Path using SQL.mp4
    21:20
  • 12.1 4 creating delta table in metastore pyspark and sql.zip
  • 12. Creating delta table in Metastore using Pyspark and SQL.mp4
    07:30
  • 13.1 lesscols.zip
  • 13.2 SchemaDifferDataType.csv
  • 13.3 schemaextracolumn1.zip
  • 13. Schema Enforcement - Files required for Understanding Schema Enforcement -.mp4
    00:39
  • 14. What is schema enforcement - Demo.mp4
    05:00
  • 15.1 4 creating delta table in metastore pyspark and sql.zip
  • 15. Schema Enforcement - Practical.mp4
    08:00
  • 16.1 4 creating delta table in metastore pyspark and sql.zip
  • 16. Schema Evolution - Practical.mp4
    05:52
  • 17.1 6 versioning and time travel.zip
  • 17. 16. Versioning and Time Travel.mp4
    19:13
  • 18.1 7 vacuum command.zip
  • 18. Vacuum command.mp4
    13:41
  • 19.1 8 convert to delta lake and checkpoints.zip
  • 19. Convert to Delta command.mp4
    06:29
  • 20.1 8 convert to delta lake and checkpoints.zip
  • 20. Checkpoints in delta log.mp4
    06:48
  • 21. Optimize command - Demo.mp4
    08:27
  • 22.1 9 optimize command.zip
  • 22. Optimize command - Practical.mp4
    15:35
  • 23.1 10 - upsert using merge command.zip
  • 23. Applying UPSERT using MERGE Command.mp4
    09:37
  • 1. Course Conclusion.mp4
    01:14
  • 2. Bonus Lecture.html
  • Description


    Build complete project only with Azure Synapse Analytics focused on PySpark includes delta lake and spark Optimizations

    What You'll Learn?


    • Understand Azure Synapse Analytics Services Practically
    • Complete basic to advanced understanding on Azure Synapse Analytics
    • Gain hands-on experience in applying Spark optimization techniques to real-world scenarios, achieving faster insights.
    • Understand 50+ most commonly used PySpark Transformations
    • Acquire a comprehensive library of 45+ PySpark notebooks for data cleansing, enrichment, and transformation.
    • Hands-on learning on building a modern data warehouse using Azure Synapse
    • Explore the capabilities of Spark Pools and their role in processing large-scale data workloads
    • Understand how python is used in Data Engineering
    • Understand and transform data with Serverless SQL pool
    • Understand the principles and advantages of Delta Lake as a reliable data storage and management solution.
    • Explore the capabilities of Spark Pools and their role in processing large-scale data workloads
    • Learn How Spark is evolved and its growth
    • Provides insights on services that needed to clear DP-203
    • Create and configure a Serverless SQL pool
    • Create External DataSource, External Files, External Tables in Serverless SQL pool
    • Configure Spark Pools and understand the working of them
    • Explore the capabilities of Spark Pools and their role in processing large-scale data workloads
    • Understand the Integration of Power BI with Azure Synapse Analytics
    • Explore the capabilities of Spark Pools and their role in processing large-scale data workloads
    • Create and work with Dedicated SQL pool on a high level
    • Optimize your PySpark with Spark Optimization techniques
    • Learn history and data processing before Spark
    • Implement the incremental UPSERT using Delta Lake
    • Understand and implement versioning in delta lake
    • Implement MSSpark Utils and the uses of its utilities
    • How we can mount Data lake to Synapse Notebooks

    Who is this for?


  • Beginners who want to step into the world of Data Engineers
  • Professional Data Engineers who want to advance their data analysis skills
  • Students who are keen to learn Data Analytics
  • Data Engineers who want to learn data warehousing in Cloud using Azure Synapse Analytics
  • What You Need to Know?


  • No Azure Synapse Analytics experience needed. You will learning everything you needed
  • Basics of Python programming
  • Basics of SQL language
  • More details


    Description

    Are you ready to revolutionize your data analytics skills? Look no further. Welcome to our comprehensive course, where you'll delve deep into the world of Azure Synapse Analytics with PySpark and emerge equipped with the tools to excel in modern data analysis.

    Unlock the Power of Azure Synapse Analytics!

    18.5+ HOURS OF IN-DEPTH LEARNING CONTENT!

    In this course we will be learning about :

    1. Serverless SQL Pool - Perform flexible querying for structured and initial data exploration

    2. Spark Pools - Dive into advanced data processing and analytics with the power of Apache Spark.

    3. Spark SQL - Seamlessly query structured data using Spark's SQL capabilities.

    4. MSSpark Utils - Leverage MSSpark Utilities for enhanced Spark functionalities for Synapse/

    5. 50+ PySpark Transformations - Harness over 50 PySpark transformations to manipulate and refine your data.

    6. Dedicated SQL Pool - To report data efficiently to Power BI.

    7. Integrating Power BI with Azure Synapse Analytics - Seamlessly connect Power BI for enriched data visualization and insights.

    8. Delta Lake and its features - Integrate Delta Lake for reliable, ACID-compliant data.

    9. Spark Optimization Techniques - Employ optimization techniques to enhance Spark processing speed and efficiency.


      You will also learn how python is helpful in data analysis. Our project-based approach ensures hands-on learning, giving you the practical experience needed to conquer real-world data challenges.

      While this course not completely focuses on certification you can also learn the practical understanding about Azure Synapse analytics service that is needed to pass DP-203 - "Microsoft Certified Azure Data Engineer" and DP-500 "Designing and Implementing Enterprise-Scale Analytics Solutions Using Microsoft Azure and Microsoft Power BI"


      Join with me in mastering Azure Synapse Analytics !

    Who this course is for:

    • Beginners who want to step into the world of Data Engineers
    • Professional Data Engineers who want to advance their data analysis skills
    • Students who are keen to learn Data Analytics
    • Data Engineers who want to learn data warehousing in Cloud using Azure Synapse Analytics

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Shanmukh Sattiraju
    Shanmukh Sattiraju
    Instructor's Courses
    An Azure Data Engineer and having vast experience on Azure Data Engineering Services and building ETL Pipelines. I have developed expertise in managing large-scale data solutions on the Microsoft Azure cloud platform. My knowledge and experience in Azure services, such as Azure Data Factory, Azure Synapse , and other data engineering services in Azure, enable me to design and implement robust data pipelines and optimize data processing workflows.In addition to my work as a data engineer, I am also a passionate blogger and instructor at Udemy. Through my blog and online courses, I share my insights and knowledge in data engineering and related topics with 200+ students on Udemy, helping them to build their skills and knowledge in the field.As a data professional, I am committed to continuous learning and staying up-to-date with the latest industry trends and technologies/With passion on learning Cloud Technologies with hands-on learning and  Certified with- Microsoft Azure Data Engineer (DP-203)- Microsoft Certified Power BI Data Analyst (PL-300)- Microsoft Certified Azure Administrator (AZ-104)- Data bricks Certified Lakehouse Fundamentals- AWS Certified Solutions Architect - Associate- AWS Certified Cloud Practitioner- Microsoft Certified Azure Fundamentals (AZ-900)- Microsoft Certified Azure Data Fundamentals (DP-900)- Microsoft Certified Azure Security, Compliance, and Identity Fundamentals (SC-900)"Evolve ourselves along with the trending technology by learning and enhance the skill set to master it"
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 190
    • duration 18:39:55
    • Release Date 2023/10/04