Companies Home Search Profile

AWS Certified Machine Learning Specialty MLS-C01 [2024]

Focused View

Chandra Lingam

16:55:55

10 View
  • 001 2020-Benefits-of-Cloud-Computing.pdf
  • 001 AWS-Certified-Machine-Learning-Specialty-Preparation.pdf
  • 001 AWS-Housekeeping.pdf
  • 001 AWS-SageMaker-Course-Introduction.pdf
  • 001 Downloadable Resources.html
  • 001 Gap-Analysis.xlsx
  • 002 Introduction.mp4
    02:49
  • 003 Increase the speed of learning.html
  • 004 Overview - AWS Machine Learning Specialty Exam.mp4
    09:05
  • 005 Exam - Gap Analysis.html
  • 006 Preparation - AWS Machine Learning Specialty Exam.mp4
    04:21
  • 007 Lab - AWS Account Setup, Free Tier Offers, Billing, Support.mp4
    07:00
  • 008 Lab - Billing Alerts, Delegate Access.mp4
    08:10
  • 009 Lab - Configure IAM Users, Setup Command Line Interface (CLI).mp4
    11:30
  • 010 [Optional] Total Cost of Ownership between On-Premises and Cloud.html
  • 011 Benefits of Cloud Computing.mp4
    08:39
  • 012 AWS Global Infrastructure Overview.mp4
    10:31
  • 013 Security is Job Zero AWS Public Sector Summit 2016 by Steve Schmidt.html
  • 014 Weekly AWS Study Group Session.html
  • 001 AWS-Introduction-ML-Concepts.pdf
  • 001 Downloadable Resources.html
  • 001 SourceCodeSetup.pdf
  • 001 usa-airpassengers-numeric.xlsx
  • 002 Lab - S3 Bucket Setup.mp4
    02:52
  • 003 Lab - Setup SageMaker Notebook Instance.mp4
    02:49
  • 004 Lab - Source Code Setup.mp4
    02:25
  • 005 Kaggle Data Setup.html
  • 006 SageMaker Console looks different from the course videos - Why.html
  • 007 How to download Kaggle data with code.html
  • 001 Introduction to Machine Learning, Concepts, Terminologies.mp4
    10:23
  • 002 Data Types - How to handle mixed data types.mp4
    12:42
  • 003 Lab - Python Notebook Environment.mp4
    10:33
  • 004 Lab - Working with Missing Data.mp4
    09:35
  • 005 Lab - Data Visualization - Linear, Log, Quadratic and More.mp4
    04:38
  • 001 Model Performance.html
  • 002 Downloadable Resources.html
  • 002 Model-Performance-Evaluation.pdf
  • 003 Introduction.mp4
    03:26
  • 004 Lab - Regression Model Performance.mp4
    09:58
  • 005 Lab - Binary Classifier Performance.mp4
    08:00
  • 006 Lab - Binary Classifier - Confusion Matrix.mp4
    06:56
  • 007 Lab - Binary Classifier - SKLearn Confusion Matrix.mp4
    03:18
  • 008 Binary Classifier - Metrics Definition.mp4
    03:52
  • 009 Binary Classifier - Metrics Calculation.mp4
    04:26
  • 010 Question - Why not Model 1.html
  • 011 Binary Classifier - Area Under Curve Metrics.mp4
    09:39
  • 012 Lab - Multiclass Classifier.mp4
    12:35
  • 013 Model Performance.html
  • 001 2020.01-AWS-SageMaker-WM.pdf
  • 001 AWS-SageMaker-Algorithms-and-Frameworks.pdf
  • 001 Downloadable Resources.html
  • 002 How is AWS SageMaker different from other ML frameworks.html
  • 003 Introduction to SageMaker.mp4
    04:54
  • 004 Instance Type and Pricing.mp4
    10:21
  • 005 CloudPractitionerReview-InfraPricingSupport.pdf
  • 005 Save Money on SageMaker Usage.html
  • 006 DataFormat.mp4
    11:12
  • 007 SageMaker Built-in Algorithms.mp4
    09:36
  • 008 Popular Frameworks and Bring Your Own Algorithm.mp4
    05:24
  • 009 CloudPractitionerReview-InfraPricingSupport.pdf
  • 009 Infrastructure, Pricing, Support - Review.html
  • 001 Overview of recent changes.html
  • 001 SageMakerServiceAndSDK.pdf
  • 002 Model Training using Console.mp4
    08:02
  • 003 Model Training using Python SDK.mp4
    08:19
  • 004 Incremental Training.html
  • 005 Lab - Review the SageMaker console for Training Job.html
  • 001 Downloadable Resources.html
  • 001 XGBoost-WM.pdf
  • 002 Introduction to XGBoost.mp4
    08:52
  • 003 Lab - Data Preparation Simple Regression.mp4
    05:06
  • 004 Lab - Training Simple Regression.mp4
    12:25
  • 005 Lab - Data Preparation Non-linear Data set.mp4
    02:39
  • 006 Lab - Training Non-linear Data set.mp4
    04:47
  • 007 Exercise - Improving quality of predictions.html
  • 008 Lab - Data Preparation Bike Rental Regression.mp4
    08:24
  • 009 Lab - Train Bike Rental Regression Model.mp4
    06:09
  • 010 Lab - Train using Log of Count.mp4
    04:14
  • 011 ResourceLimitExceeded Error - How to Increase Resource Limit.html
  • 012 Lab - How to train using SageMakers built-in XGBoost Algorithm.mp4
    07:36
  • 013 Q&A How does SageMaker built-in know the target variable.html
  • 014 Lab - How to run predictions against an existing SageMaker Endpoint.mp4
    04:29
  • 015 SageMaker Endpoint Features.mp4
    05:41
  • 016 SageMaker Spot Instances - Save up to 90% for training jobs.html
  • 017 Lab - Multi-class Classification.mp4
    05:41
  • 018 Lab - Binary Classification.mp4
    06:21
  • 019 Exercise - Improve Data Quality in Diabetes dataset.html
  • 020 Question on Diabetes Data Quality Improvement.html
  • 021 Question on Diabetes model - is group mean on target the right approach.html
  • 022 HyperParameter Tuning, Bias-Variance, Regularization (L1, L2).mp4
    11:08
  • 023 Exercise - Mushroom Classification.html
  • 001 AWS-SageMaker-Integration.pdf
  • 001 Install SageMaker SDK, GIT Client, Source Code, Security Permissions.html
  • 001 Local-Machine-Housekeeping.pdf
  • 002 IAM users for the lab.html
  • 003 Integration Overview.mp4
    02:32
  • 004 Lab - Client to Endpoint using SageMaker SDK.mp4
    09:26
  • 005 Lab - Client to Endpoint using Boto3 SDK.mp4
    03:50
  • 006 Microservice - Lambda to Endpoint - Payload.mp4
    03:24
  • 007 Lambda UI Changes.html
  • 008 Lab - Microservice - Lambda to Endpoint.mp4
    09:09
  • 009 API Gateway - UI Changes.html
  • 010 Lab - API Gateway, Lambda, Endpoint.mp4
    10:34
  • 001 Downloadable Resources.html
  • 001 SageMakeEndpoints.pdf
  • 002 [Repeat] Endpoint Features, Monitoring and AutoScaling.mp4
    05:41
  • 003 How to handle changes to production system.mp4
    07:54
  • 004 Lab - AB Testing Multiple Production Variants.mp4
    11:53
  • 005 Lab Multi-model Endpoint.mp4
    08:15
  • 006 Run Models at the Edge.html
  • 001 Downloadable Resources.html
  • 001 FairnessAndExplainability.pdf
  • 002 Is AI Biased.mp4
    07:40
  • 003 Tools to Detect Bias - Clarify, Experiments, Model Monitor, Augmented AI.mp4
    07:41
  • 004 3.SageMaker-Tools.pdf
  • 004 And Some More Tools.html
  • 001 2020-IAM.pdf
  • 001 Introduction.html
  • 002 Shared Responsibility Model, Compliance, Delegation, Federation.mp4
    08:33
  • 003 Credentials, MFA, Identity-based, Resources-based Policy.mp4
    07:24
  • 004 Inline and Managed Policy, Amazon Resource Naming (ARN) Convention.mp4
    08:30
  • 005 Principal, Effect, Action, Resource, Not Clause.mp4
    06:55
  • 006 Conditional Access, Implicit Deny, Explicit Allow and Deny, Permission Boundary.mp4
    07:42
  • 007 IAM Roles, Cross-account access options.mp4
    06:17
  • 008 Federation, SSO, SAML, Active Directory, AWS Organizations, Cognito.mp4
    06:16
  • 009 Lab - Identity-based policy, Implicit Deny, Explicit Allow.mp4
    05:01
  • 010 Lab - Policy Generator, Managed Policy, Versions, Groups.mp4
    05:40
  • 011 Lab - Resource-based policy, Policy Generator, Principals.mp4
    05:14
  • 001 Normalization and Standardization.html
  • 002 AWS-SageMakerPCA-WM.pdf
  • 002 Downloadable Resources.html
  • 003 Introduction to Principal Component Analysis (PCA).mp4
    05:49
  • 004 PCA Demo Overview.mp4
    01:16
  • 005 Demo - PCA with Random Dataset.mp4
    03:29
  • 006 Demo - PCA with Correlated Dataset.mp4
    05:26
  • 007 Cleanup Resources on SageMaker.html
  • 008 Demo - PCA with Kaggle Bike Sharing - Overview and Normalization.mp4
    03:51
  • 009 Demo - PCA Local Mode with Kaggle Bike Train.mp4
    03:30
  • 010 Demo - PCA training with SageMaker.mp4
    04:22
  • 011 Demo - PCA Projection with SageMaker.mp4
    02:42
  • 012 Exercise Kaggle Bike Train and PCA.html
  • 013 Summary.mp4
    01:22
  • 001 Recommender System.html
  • 002 2.AWS-SageMakerFactorizationMachine-WM.pdf
  • 002 Downloadable Resources.html
  • 003 Introduction to Factorization Machines.mp4
    05:59
  • 004 MovieLens Dataset.html
  • 005 Demo - Movie Recommender Data Preparation.mp4
    10:35
  • 006 Demo - Movie Recommender Model Training.mp4
    05:34
  • 007 Demo - Movie Predictions By User.mp4
    07:10
  • 001 AWS-SageMaker-Hyperparameter-Tuning.pdf
  • 001 Downloadable Resources.html
  • 001 FM-Autotuning-Lab-Configuration.xlsx
  • 002 Introduction to Hyperparameter Tuning.mp4
    06:11
  • 003 Lab Tuning Movie Rating Factorization Machine Recommender System.mp4
    18:05
  • 004 Lab Step 2 Tuning Movie Rating Recommender System.mp4
    05:00
  • 005 HyperParameter, Bias-Variance, Regularization (L1, L2) [Repeat from XGBoost].mp4
    11:08
  • 006 Nuts and Bolts of Optimization.html
  • 007 Model Optimization - related question.html
  • 001 AWS-SageMakerDeepAR-WM.pdf
  • 001 Downloadable Resources.html
  • 002 Introduction to DeepAR Time Series Forecasting.mp4
    09:47
  • 003 DeepAR Training and Inference Formats.mp4
    09:49
  • 004 Working with Time Series Data, Handling Missing Values.mp4
    09:58
  • 005 Demo - Bike Rental as Time Series Forecasting Problem.mp4
    11:43
  • 006 Demo - Bike Rental Model Training.mp4
    07:21
  • 007 Demo - Bike Rental Prediction.mp4
    04:50
  • 008 Demo - DeepAR Categories.mp4
    06:10
  • 009 Demo - DeepAR Dynamic Features Data Preparation.mp4
    06:34
  • 010 Demo - DeepAR Dynamic Features Training and Prediction.mp4
    03:05
  • 011 Summary.mp4
    01:16
  • 012 Question How to train a model for different products using DeepAR.html
  • 001 2020-RandomCutForest.pdf
  • 001 Downloadable Resources.html
  • 002 Introduction to Random Cut Forest and Intuition Behind Anomaly Detection.mp4
    10:10
  • 003 Lab - Taxi Passenger Traffic Analysis (AWS Provided Example).mp4
    08:53
  • 004 Lab - Auto Sales Analysis.mp4
    05:54
  • 001 AWS-AI-Services.pdf
  • 001 Downloadable Resources.html
  • 002 Lab Instructions.html
  • 003 1. Introduction.mp4
    03:15
  • 004 2.1 Amazon Transcribe and Lab.mp4
    05:32
  • 005 2.2 Amazon Transcribe and Lab.mp4
    06:34
  • 006 3. Amazon Translate.mp4
    04:29
  • 007 Translate - Practical Scenario.html
  • 008 4.1 Amazon Comprehend.mp4
    05:42
  • 009 Pricing Comprehend.html
  • 010 4.2 Amazon Comprehend.mp4
    05:00
  • 011 4.3 Amazon Comprehend training.mp4
    08:35
  • 012 5. Amazon Polly.mp4
    04:16
  • 013 6. Amazon Lex.mp4
    06:48
  • 014 7. Amazon Rekognition.mp4
    08:21
  • 015 8. Amazon Textract & Summary.mp4
    03:02
  • 001 AWS-Data-Lake.pdf
  • 001 Downloadable Resources.html
  • 002 Lab Instructions.html
  • 003 Introduction to Data Lake.mp4
    10:28
  • 004 Kinesis - Streaming and Batch Processing.mp4
    05:23
  • 005 Data Formats and Tools for Data Format Conversion.mp4
    08:34
  • 006 In-Place Analytics and Portfolio of Tools.mp4
    04:46
  • 007 Monitoring and Optimization.mp4
    06:16
  • 008 Security and Protection.mp4
    06:36
  • 009 Lab Instructions - Glue Data Catalog.html
  • 010 Lab Glue Data Catalog.mp4
    08:31
  • 011 Lab Instructions Athena In-place Querying.html
  • 012 Lab - Query with Athena.mp4
    02:01
  • 013 Lab - Glue ETL - Convert format to Parquet.mp4
    04:43
  • 014 Lab - Query Amazon Customer Reviews with Athena.mp4
    05:06
  • 015 Lab Sentiment of the Customer Review.mp4
    06:06
  • 016 Lab - Query Sentiment of Customer Reviews using Athena.mp4
    04:17
  • 017 Lambda UI Changes.html
  • 018 Lab Serverless Customer Review Solution Part 1.mp4
    09:45
  • 019 Lab Serverless Customer Review Solution Part 2.mp4
    07:51
  • 001 AWS-Deep-Learning-01.pdf
  • 001 ReadMe and Downloadable Resources.html
  • 002 Lab Instructions.html
  • 003 Concepts - Gradient Descent, Loss Function for Regression.mp4
    14:11
  • 004 Concepts - Gradient Descent, Loss Function for Classification.mp4
    10:02
  • 005 Neural Networks and Deep Learning.mp4
    07:35
  • 006 Introduction to Deep Learning.html
  • 007 Convolutional Neural Network (CNN).html
  • 008 Recurrent Neural Networks (RNN), LSTM.html
  • 009 Generative Adversarial Networks (GANs).html
  • 010 Real World Blind Face Restoration.html
  • 011 Nuts and Bolts of Optimization [Repeat].html
  • 012 Lab - Regression with SKLearn Neural Network.mp4
    06:38
  • 013 Lab - Regression with Keras and TensorFlow.mp4
    07:23
  • 014 Customer Churn Data.html
  • 014 churn.txt
  • 015 Lab - Binary Classification - Part 1- Customer Churn Prediction.mp4
    05:59
  • 016 Lab - Binary Classification - Part 2 - Customer Churn Prediction.mp4
    07:32
  • 017 Lab - Multiclass Classification - Iris.mp4
    04:48
  • 018 Transfer Learning.html
  • 019 Optimizing for GPUs.html
  • 020 Multi-Class Multi-Label Classification.html
  • 001 How to use TensorFlow, Pytorch, SKLearn in SageMaker.html
  • 002 AWS-SageMaker-Custom-Algorithms-and-Frameworks.pdf
  • 002 Downloadable Resources.html
  • 003 Introduction and How built-in algorithms work.mp4
    05:06
  • 004 Custom Image and Popular Framework.mp4
    03:55
  • 005 Folder Structure and Environment Variables.mp4
    07:19
  • 006 Lab - SKLearn Estimator Bring Your Own Part 1.mp4
    09:22
  • 007 Lab - SKLearn Estimator Bring Your Own Part 2.mp4
    08:15
  • 008 Lab - TensorFlow Estimator Bring Your Own.mp4
    03:51
  • 001 AWS-Storage.pdf
  • 001 Downloadable Resources.html
  • 002 Introduction to Storage.mp4
    08:40
  • 003 Elastic Block Store (EBS).mp4
    13:09
  • 004 Elastic File System, FSx for Windows, FSx for Lustre.mp4
    04:52
  • 005 Elastic Block Store (EBS) Encryption.html
  • 001 AWS Product Improvement Feedback.html
  • 002 How to contact AWS for Production Support.mp4
    07:14
  • 001 AWS-Database-Distribution-ML.pdf
  • 001 Downloadable Resources.html
  • 002 AWS Databases - Introduction, Benefits, and Types.mp4
    08:09
  • 003 Relational Database Service (RDS) - Features and Benefits.mp4
    12:41
  • 004 Aurora and Aurora Serverless Relational Database.mp4
    04:47
  • 005 DynamoDB - Primary Key, Partitions, and Features.mp4
    08:03
  • 006 Cassandra and DocumentDB.mp4
    02:30
  • 007 Amazon ElastiCache - Usage Example, Features.mp4
    05:29
  • 008 Amazon Redshift.mp4
    02:26
  • 001 SageMaker Canvas Service No Code ML.html
  • 002 On-Premises Usage and other technologies.html
  • 001 Sections to Review.html
  • 002 AWS Exam Readiness.html
  • 001 How to Access Discount Vouchers.html
  • 002 Congratulations!.html
  • Description


    Experience AWS SageMaker: A Practical Course with Hands-On Learning, Practice Tests and Certification Preparation

    What You'll Learn?


    • You will gain first-hand experience on how to train, optimize, deploy, and integrate ML in AWS cloud
    • AWS Built-in algorithms, Bring Your Own, Ready-to-use AI capabilities
    • Complete Guide to AWS Certified Machine Learning – Specialty (MLS-C01)
    • Includes a high-quality Timed practice test (a lot of courses charge a separate fee for practice test)
    • Zero Downtime Model Deployment
    • How to Integrate and Invoke ML from your Application
    • Automated Hyperparameter Tuning

    Who is this for?


  • This course is designed for anyone who is interested in AWS cloud based machine learning and data science
  • AWS Certified Machine Learning - Specialty Preparation
  • What You Need to Know?


  • Familiarity with Python
  • AWS Account - I will walk through steps to setup one
  • Basic knowledge of Pandas, Numpy, Matplotlib
  • Be an active learner and use course discussion forum if you need help - Please don't put help needed items in course review
  • More details


    Description

    Learn about cloud based machine learning algorithms, how to integrate with your applications and Certification Prep

    Welcome to AWS Machine Learning Specialty Course!

    In this course, you will gain practical experience with AWS SageMaker through hands-on labs that demonstrate specific concepts. We will begin by setting up your SageMaker environment. If you are new to machine learning, you will learn how to handle mixed data types, missing data, and how to verify the quality of the model. These topics are essential for machine learning practitioners and the certification exam.

    SageMaker uses containers to package algorithms and frameworks, such as Pytorch and TensorFlow. The container-based approach provides a standard interface for building and deploying your models, and it is easy to convert your model into a production application. Through a series of concise labs, you will train, deploy, and invoke your first SageMaker model.

    Like any other software project, a machine-learning solution also requires continuous improvement. We will look at how to safely incorporate new changes in a production system, perform A/B testing, and even roll back changes when necessary, all with zero downtime to your application.

    We will also discuss emerging social trends in the fairness of machine learning and AI systems. What will you do if your users accuse your model of being racially or gender-biased? How will you handle it? In this section, we will cover the concept of fairness, how to explain a decision made by the model, different types of bias, and how to measure them.

    We will also cover cloud security and how to protect your data and model from unauthorized use. You will learn about recommender systems and how to incorporate features such as movie and product recommendations. The algorithms you learn in the course are state-of-the-art, and tuning them for your dataset can be challenging. We will look at how to tune your model with automated tools, and you will gain experience in time series forecasting, anomaly detection, and building custom deep-learning models.

    With the knowledge you gain in this course, and the included high-quality practice exam, you will be well-prepared to achieve the AWS Certified Machine Learning - Specialty certification. I am looking forward to meeting you and helping you succeed in this course. Thank you!

    Who this course is for:

    • This course is designed for anyone who is interested in AWS cloud based machine learning and data science
    • AWS Certified Machine Learning - Specialty Preparation

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Chandra Lingam
    Chandra Lingam
    Instructor's Courses
    Chandra Lingam is an experienced professional in AWS, with a strong background in mission-critical systems and machine learning. He has a wealth of knowledge and expertise in systems development for both traditional IT data centers and cloud computing.Chandra's courses on the AWS certification have been highly praised and were even mentioned in a recent Udemy earnings call by the CEO. Prior to his work as a course developer and instructor, he spent 15 years as a software engineer at Intel.Chandra holds a Master's in Computer Science from Arizona State University and a Bachelor's in Computer Science from Thiagarajar College of Engineering in Madurai.His courses offer valuable and up-to-date content for both beginners and experienced IT professionals looking to advance their skills in AWS and related technologies.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 148
    • duration 16:55:55
    • English subtitles has
    • Release Date 2024/02/25