Companies Home Search Profile

AWS Certified Machine Learning Engineer - Associate MLA-C01

Focused View

Nikolai Schuler

25:50:25

0 View
  • 1 -Welcome!.mp4
    02:13
  • 2 -About the exam & this course.mp4
    07:59
  • 3 -Important tips for this course.mp4
    02:28
  • 4 -All Slides.pdf
  • 4 - All Slides.html
  • 1 -AWS Free Tier Account ML.mp4
    06:18
  • 3 -SageMaker Notebooks.mp4
    06:37
  • 4 -Setting Up SageMaker Notebook Instance.mp4
    06:58
  • 5 -Basic Operations in SageMaker Notebook Instance.mp4
    09:17
  • 6 -SageMaker Studio Setting Up Domain & Users.mp4
    08:08
  • 7 -SageMaker Studio Overview.mp4
    08:56
  • 8 -AWS Budgets Machine Learning.mp4
    06:32
  • 1 -Data Preparation with Data Wrangler.mp4
    04:38
  • 2 -Import data using Data Wrangler.mp4
    07:07
  • 3 -Data Wrangler - Get Insights.mp4
    05:56
  • 4 -Data Wrangler Transform Data.mp4
    09:55
  • 5 -Export Data in Data Wrangler.mp4
    06:58
  • 6 -Stop Running Instances.mp4
    02:08
  • 7 -Understanding Feature Engineering.mp4
    10:21
  • 8 -SageMaker Feature Store.mp4
    05:24
  • 9 -Feature Store - Creating Features & Feature Group.mp4
    09:58
  • 10 -SageMaker Notebooks- Setting up Features.mp4
    09:13
  • 10 -income data.csv
  • 10 -sagemaker feature store notebook with docs.zip
  • 11 -SageMaker Ground Truth.mp4
    06:25
  • 12 -Create Labeling Jobs in Groud Truth.mp4
    14:27
  • 12 -image.zip
  • 13 -Setting up Groud Truth Workforce.mp4
    06:53
  • 14 -Ground Truth Plus.mp4
    01:30
  • 1 -Training with Built-in Algorithms.mp4
    03:08
  • 2 -SageMaker JumpStart.mp4
    06:17
  • 3 -Deploy a Model Using JumpStart.mp4
    11:31
  • 4 -Training Models - Potential Paths.mp4
    09:00
  • 5 -Employee.csv
  • 5 -Prepare The Training Of The Model.mp4
    11:10
  • 5 -sagemaker employee attrition demo.zip
  • 6 -Train Model.mp4
    07:10
  • 7 -Reviewing the Trained Model.mp4
    02:26
  • 8 -Model Tuning & Hyperparameters.mp4
    04:38
  • 9 -Hyperparamter Optimization Techniques.mp4
    05:07
  • 10 -Hyperparameter Tuning.txt
  • 10 -Hyperparameter Tuning in Notebooks.mp4
    08:29
  • 11 -Hyperparameter Tuning in the UI.mp4
    08:29
  • 12 -SageMaker Canvas.mp4
    06:54
  • 14 -SageMaker Canvas Predict & Deploy.mp4
    05:41
  • 15 -Custom Training Script.mp4
    06:49
  • 16 -Custom Docker Containers.mp4
    04:07
  • 17 -Distributed Training.mp4
    06:51
  • 1 -SageMaker Experiments.mp4
    07:55
  • 2 -MLflow.zip
  • 2 -MLflow Setting Up Tracking Server.mp4
    08:05
  • 3 -MLflow Setup Experiment.mp4
    05:08
  • 4 -MLflow Track & Record Experiments.mp4
    11:48
  • 5 -SageMaker Neo.mp4
    05:34
  • 1 -Challenges of Responsible Al.mp4
    04:14
  • 2 -Strategies Against Bias & Variance.mp4
    03:55
  • 3 -SageMaker Clarify.mp4
    06:23
  • 4 -Employee.csv
  • 4 -SageMaker Clarify Pre-Training Analysis.mp4
    10:33
  • 4 -sagemaker clarify demo.zip
  • 5 -SageMaker Clarify Review Pre-Training Analysis.mp4
    06:49
  • 6 -SageMaker Clarify Model Bias Analysis.mp4
    09:32
  • 7 -SageMaker Clarify Explainability Report.mp4
    09:07
  • 1 -SageMaker Debugger.mp4
    04:13
  • 2 -SageMaker Debugger (Hands-on).mp4
    15:32
  • 2 -sagemaker debugger demo.zip
  • 3 -Model Deployment Strategies in SageMaker.mp4
    05:28
  • 4 -Deploy Real-Time Inference Endpoint.mp4
    06:46
  • 4 -sagemaker model deployment examples.zip
  • 5 -Deploying Endpoint using Model Artifact.mp4
    03:20
  • 6 -Serverless Inference Endpoint.mp4
    02:26
  • 7 -Deploy Using Batch Transform.mp4
    05:24
  • 8 -Deploy as Asynchronous Inference Endpoint.mp4
    07:30
  • 9 -Multi-Model & Multi-Container Endpoints in SageMaker.mp4
    04:30
  • 10 -Deploying a Multi-Model Endpoint.mp4
    06:53
  • 1 -Monitoring Models.mp4
    04:17
  • 2 -SageMaker Model Monitor.mp4
    02:51
  • 3 -Monitoring Data Quality in SageMaker.mp4
    05:58
  • 4 -Monitor Model Quality with SageMaker.mp4
    05:10
  • 5 -ModelMonitoring.zip
  • 5 -Model Monitoring Create a Baseline.mp4
    10:44
  • 6 -SageMaker Monitor Create a Schedule.mp4
    07:46
  • 1 -SageMaker Pipelines.mp4
    04:58
  • 2 -SageMaker Pipelines (Hands-on).mp4
    11:04
  • 2 -sagemakerpipelines.zip
  • 3 -Model Registry.mp4
    04:40
  • 4 -SageMaker Model Registry.mp4
    04:00
  • 1 -Understanding Machine Learning Models.mp4
    07:48
  • 2 -Supervised Learning.mp4
    09:05
  • 3 -Unsupervised Learning.mp4
    06:17
  • 4 -Text Analysis Algorithms.mp4
    04:46
  • 5 -Image Classification.mp4
    05:31
  • 6 -Reinforcement Learning.mp4
    05:08
  • 7 -Reinforcement Learning with SageMaker.mp4
    03:46
  • 8 -Model Evaluation Concepts.mp4
    04:32
  • 9 -Performance Evaluation Metrics.mp4
    06:24
  • 10 -Machine Learning Development Lifecycle.mp4
    07:59
  • 11 -MLOps.mp4
    08:25
  • 1 -What is Amazon Bedrock.mp4
    08:25
  • 2 -Amazon Bedrock - Architecture.mp4
    04:09
  • 3 -Amazon Bedrock - Use Cases.mp4
    02:17
  • 4 -Hands-on Exploring Amazon Bedrock.mp4
    09:15
  • 5 -Hands-on Installing Visual Studio Code.mp4
    01:47
  • 6 -Hands-on Setting up Visual Studio Code.mp4
    07:12
  • 7 -Hands-on Invoking Amazon Titan Model.mp4
    07:55
  • 8 -Hands-on Image Generation in Bedrock.mp4
    07:11
  • 9 -Amazon Personalize.mp4
    02:28
  • 10 -Dataset.csv
  • 10 -Hands-on Dataset Group (Amazon Personalize).mp4
    13:12
  • 10 -Movies Data with Year.csv
  • 10 -S3Policy.txt
  • 10 -Users Data.csv
  • 11 -Hands-on Training Dataset (Amazon Personalize).mp4
    03:46
  • 12 -Hands-on Train Model (Amazon Personalize).mp4
    06:09
  • 13 -Hands-on Make Predictions (Amazon Personalize).mp4
    07:00
  • 14 -Amazon Fraud Detector.mp4
    06:51
  • 15 -Setup & Event Type (Amazon Fraud Detector).mp4
    12:09
  • 15 -test dataset.csv
  • 15 -train dataset.csv
  • 16 -Build & Train Model (Amazon Fraud Detector).mp4
    05:23
  • 17 -Evaluate our Model (Amazon Fraud Detector).mp4
    09:07
  • 18 -Create Detector & Make Predictions (Amazon Fraud Detector).mp4
    10:03
  • 19 -Cleaning up Resources (Amazon Fraud Detector).mp4
    06:52
  • 20 -Amazon Augmented AI.mp4
    04:12
  • 21 -Amazon Comprehend.mp4
    07:17
  • 22 -Hands-on Amazon Comprehend.mp4
    06:42
  • 23 -Amazon Comprehend Medical Hands on.mp4
    05:18
  • 24 -Amazon Rekognition.mp4
    03:06
  • 25 -Hands-on Amazon Rekognition.mp4
    05:14
  • 26 -Hands-on Using Rekognition in Lambda Function.mp4
    10:11
  • 27 -Amazon Textract.mp4
    06:35
  • 28 -Hands-on Amazon Textract.mp4
    08:15
  • 29 -Amazon Kendra.mp4
    06:27
  • 30 -Employee Onboarding Guide.pdf
  • 30 -Hands-on Create an Index & Sync (Amazon Kendra).mp4
    10:42
  • 31 -Hands-on Create Experience (Amazon Kendra).mp4
    08:33
  • 1 -AWS S3 - Basics.mp4
    08:44
  • 2 -Create a Bucket in S3 (Hands-on).mp4
    04:19
  • 3 -Uploading files to S3 (Hands-on).mp4
    02:16
  • 3 -customers.csv
  • 4 -Streaming vs Batch Ingestion.mp4
    02:56
  • 6 -Setting Up Crawlers (Hands-on).mp4
    11:08
  • 1 -AWS Athena - Overview.mp4
    04:20
  • 2 -Query data using Athena (Hands-on).mp4
    05:16
  • 3 -Federated Queries.mp4
    02:18
  • 4 -Performance & Cost.mp4
    10:06
  • 5 -Workgroups.mp4
    03:04
  • 6 -Workgroups (Hands-on).mp4
    02:49
  • 1 -Glue Costs.mp4
    07:34
  • 2 -Run Glue ETL Jobs (Hands-on).mp4
    13:19
  • 3 -Scheduling Crawlers & ETL Jobs (Hands-on).mp4
    03:36
  • 4 -Stateful vs Stateless.mp4
    05:10
  • 5 -Stateless Data Ingestion in Glue (Hands-on).mp4
    03:49
  • 5 -customers2.csv
  • 6 -Stateful Ingestion with Bookmarks (Hands-on).mp4
    05:10
  • 6 -customers2.csv
  • 7 -Glue Transformations (ETL).mp4
    05:09
  • 8 -Glue Data Quality (Hands-on).mp4
    05:45
  • 9 -Glue Workflows.mp4
    04:33
  • 10 -Glue Workflows - (Hands-on).mp4
    07:33
  • 11 -Glue Job Types.mp4
    06:43
  • 12 -Glue Job Types (Hands-on).mp4
    02:32
  • 13 -Partitioning.mp4
    02:55
  • 14 -AWS Glue DataBrew.mp4
    06:17
  • 15 -AWS Glue DataBrew - Transformations.mp4
    07:43
  • 16 -AWS Glue DataBrew (Hands-On).mp4
    10:09
  • 17 -AWS Lambda.mp4
    07:07
  • 18 -Event Lambda Function.txt
  • 18 -Event-Driven Ingestion with AWS Lambda (Hands-on).mp4
    10:07
  • 18 -customers.csv
  • 19 -Lambda Layers.mp4
    04:13
  • 20 -Replayability.mp4
    05:57
  • 21 -Amazon Kinesis for Streaming Data.mp4
    03:34
  • 22 -Amazon Kinesis Data Streams.mp4
    12:11
  • 23 -Throughput and Latency.mp4
    04:20
  • 24 -Creating a Data Stream (Hands-on).mp4
    05:05
  • 25 -Enhanced Fan-Out for Kinesis Consumers.mp4
    05:25
  • 26 -KinesisStream.txt
  • 26 -Pull and Consume Data From Stream (Hands-on).mp4
    08:53
  • 27 -Calling a Lambda Function From Amazon Kinesis (Hands-on).mp4
    08:53
  • 27 -LambdaFunctionKinesis.txt
  • 28 -Common Issues & Troubleshooting.mp4
    10:53
  • 29 -Kinesis Firehose.mp4
    12:32
  • 30 -Creating Data Firehose Stream (Hands-on).mp4
    07:02
  • 31 -Data Firehose - Transformations with Lambda (Hands-on).mp4
    07:54
  • 32 -Amazon Managed Service for Apache Flink.mp4
    08:31
  • 33 -Amazon MSK.mp4
    09:07
  • 34 -MSK Connect & MSK Serverless.mp4
    02:49
  • 35 -Amazon EMR.mp4
    12:11
  • 36 -AWS EMR Cluster Types & Storage.mp4
    05:54
  • 37 -AWS EMR Storage & Scaling.mp4
    03:48
  • 38 -AWS EMR Deployment Options.mp4
    03:33
  • 1 -Importance of Partitioning.mp4
    03:07
  • 2 -Partitioning with Glue (Hands-on).mp4
    11:46
  • 2 -sales data files.zip
  • 3 -Lifecycle Management & Storage Classes.mp4
    10:18
  • 4 -Using Lifecycle Rules.mp4
    01:37
  • 5 -Storage Classes (Hands-on).mp4
    05:03
  • 5 -gpt-4.pdf
  • 6 -Intelligent Tiering (Hands-on).mp4
    04:13
  • 7 -Lifecycle Rules (Hands-on).mp4
    04:39
  • 8 -Versioning in S3.mp4
    05:56
  • 9 -FilesUsed.zip
  • 9 -Versioning (Hands-on).mp4
    10:08
  • 10 -Replication.mp4
    06:37
  • 11 -Replication (Hands-on).mp4
    06:38
  • 11 -sensor data.zip
  • 11 -supermarket sales.csv
  • 12 -Security in S3.mp4
    06:28
  • 13 -Security (Hands-on).mp4
    04:12
  • 14 -Bucket Policies.mp4
    02:26
  • 15 -Access Points in S3.mp4
    02:32
  • 16 -Object Lambda.mp4
    03:30
  • 17 -S3 Event Notifications.mp4
    04:49
  • 17 -bucketpolicy.zip
  • 18 -S3 Event Notifications (Hands-on).mp4
    08:49
  • 19 -S3 Select & Glacier Select.mp4
    03:57
  • 19 -customers.csv
  • 19 -customers2.csv
  • 20 -S3 Select (Hands-on).mp4
    04:55
  • 21 -Data Mesh.mp4
    03:51
  • 22 -Data Exchange.mp4
    02:34
  • 23 -Amazon Elastic Block Store (EBS).mp4
    06:41
  • 24 -EBS Provisioning.mp4
    09:24
  • 25 -EBS Volumes (Hands-on).mp4
    09:01
  • 26 -Amazon Elastic File System (EFS).mp4
    07:51
  • 1 -IAM Overview.mp4
    02:33
  • 2 -IAM Users, Groups & Role.mp4
    05:11
  • 3 -IAM Policies.mp4
    08:30
  • 5 -IAM Policies (Hands-on).mp4
    06:00
  • 6 -IAM Create Groups & Roles (Hands-on).mp4
    05:14
  • 7 -AWS KMS Overview.mp4
    08:54
  • 8 -AWS KMS Key Management & Pricing.mp4
    04:25
  • 9 -AWS KMS Cross-Region & Cross-Account.mp4
    08:00
  • 10 -AWS Macie.mp4
    02:45
  • 11 -AWS Secrets.mp4
    05:36
  • 12 -AWS Secrets (Hands-on).mp4
    05:20
  • 13 -AWS Shield.mp4
    03:13
  • 14 -Virtual Private Cloud & Subnets.mp4
    02:58
  • 15 -Gateways.mp4
    02:26
  • 16 -VPN & VPC Peering.mp4
    02:33
  • 17 -Security Groups & NACLs.mp4
    01:19
  • 18 -Additional VPC features.mp4
    01:23
  • 19 -AWS CloudTrail.mp4
    08:09
  • 20 -AWS CloudTrail Lake.mp4
    01:41
  • 21 -AWS Config.mp4
    06:26
  • 22 -AWS Config (Hands-on).mp4
    07:19
  • 23 -AWS Well-Architected Framework.mp4
    04:54
  • 24 -AWS Well-Architected Tool.mp4
    04:47
  • 1 -AWS CloudFormation.mp4
    05:11
  • 2 -AWS CloudFormation (Hands-on).mp4
    09:03
  • 2 -example.zip
  • 3 -Docker Containers.mp4
    08:38
  • 4 -Amazon ECS.mp4
    05:39
  • 5 -Amazon ECS - Launch Types.mp4
    08:41
  • 6 -Amazon ECS - IAM Roles.mp4
    02:00
  • 7 -Amazon ECR.mp4
    04:46
  • 8 -Amazon EKS.mp4
    07:34
  • 1 -Amazon CloudWatch Overview.mp4
    05:32
  • 2 -Amazon CloudWatch Metrics (Hands-on).mp4
    06:22
  • 3 -Amazon CloudWatch Metrics Stream.mp4
    02:36
  • 4 -Amazon CloudWatch Alarms.mp4
    04:51
  • 5 -CloudWatch Alarms (Hands-on).mp4
    04:51
  • 6 -Amazon CloudWatch Logs.mp4
    03:31
  • 7 -CloudWatch Logs (Hands-on).mp4
    03:31
  • 8 -Amazon CloudWatch Log Filtering & Subscription.mp4
    04:13
  • 9 -Amazon CloudWatch Logs Agent.mp4
    02:15
  • 1 -What is Amazon Q Business.mp4
    08:29
  • 2 -Hands-on Create Amazon Q Business Application.mp4
    14:09
  • 2 -Sample Employee Dataset.csv
  • 3 -Hands-on Assign Users & Test Application.mp4
    07:41
  • 4 -Hands-on Using Global Controls.mp4
    06:24
  • 5 -Hands-on Blocking Words.mp4
    02:40
  • 6 -Hands-on Topic Controls.mp4
    06:45
  • 7 -Amazon Transcribe.mp4
    08:11
  • 8 -Hands-on Amazon Transcribe.mp4
    11:22
  • 9 -Amazon Polly.mp4
    03:13
  • 10 -Hands-on Pricing & Models (Amazon Polly).mp4
    05:10
  • 11 -Hands-on Text-to-Speech (Amazon Polly).mp4
    04:02
  • 12 -Hands-on SSML to modify speech output (Amazon Polly).mp4
    05:16
  • 13 -Hands-on Real-time translation (Amazon Translate).mp4
    06:09
  • 14 -Hands-on Batch job translation (Amazon Translate).mp4
    10:11
  • 14 -Translate.zip
  • 1 -Exam Signup & Get 30min more time!.mp4
    08:10
  • 2 -Final Exam Tips.mp4
    07:26
  • Description


    The ONLY course you need to PASS the AWS Certified Machine Learning Engineer Exam | MLA-C01 | Incl. FULL Practice Exam!

    What You'll Learn?


    • PASS the AWS Certified Machine Learning Engineer Associate Exam (MLA-C01)
    • Full Practice Exam incl. Full Explanations to ACE the exam
    • All Slides available as downloadable PDFs
    • All Topics Covered & 100% up-to-date
    • Hands-on Demos with Real-World Scenarios
    • Start your Machine Learning Career
    • Build, Train & Deploy Machine Learning Models in Amazon SageMaker
    • Data Ingestion and Preprocessing with SageMaker Data Wrangler
    • Full Machine Learning Pipelines with SageMaker & Much More
    • Master the Full Machine Learning Lifecycle with Real-World Skills

    Who is this for?


  • Aspiring Machine Learning Engineers looking to get certified and kickstart their ML careers
  • Data Scientists, Data Engineers, Developers, and IT Professionals
  • Professionals seeking to expand their knowledge of Machine Learning on AWS
  • What You Need to Know?


  • No previous experience with AWS or Machine Learning is needed!
  • More details


    Description

    The ONLY course you need to prepare and PASS the AWS Certified Machine Learning Engineer – Associate exam (MLA-C01) and become an AWS Certified Machine Learning Engineer – Associate!

    Make your exam preparation and learning Machine Learning on AWS fun, easy, and highly effective with real-life hands-on projects, quizzes, and a full practice exam!

    This course teaches you every single topic you need to master the exam with ease.


    Why is this the ONLY course you need to pass the AWS Certified Machine Learning Engineer exam?

    • Every single topic is covered in depth

    • 100% up-to-date!

    • Hands-On & Practical

    • Full practice exam including all explanations

    • Practical & Real-World Skills

    • Tips for success

    • This course guides you step-by-step to prepare in the best possible way for the exam

    • Don’t waste your time but focuses on what really matters to master the exam!


    This course guides you step-by-step to prepare in the best possible way for the exam and start your successful career in machine learning!


    Your Instructor

    Hi, my name is Nikolai, and I am AWS Certified and I teach AWS and data analytics in over 200 countries. My mission with this course is to take the stress out of your exam prep, make it fun but very effective to maximize your preparation time. I want to make sure you have the best chances of succeeding and moving your career forward with the AWS Machine Learning Engineer certification in your professional journey.


    Enroll Now and Get:


    • Lifetime Access including all future updates

    • High quality video content

    • All slides & project files as downloadable resources

    • Full practice exam with explanations

    • Tipps for success & expert-level support

    • 30-day money-back guarantee (no-questions-asked!)



    Become an Expert & Learn the Full Machine Learning Lifecycle in AWS:


    • PASS the AWS Certified Machine Learning Engineer exam

    • Master Machine Learning on AWS and become an expert

    • Build, train, and deploy machine learning models with SageMaker

    • Orchestrate ML workflows with SageMaker Pipelines

    • Perform data ingestion and transformation with SageMaker Data Wrangler and AWS Glue

    • Use SageMaker Feature Store for feature engineering

    • Deploy models using real-time, batch, and serverless inference

    • Monitor models in production with SageMaker Model Monitor

    • Debug and optimize models with SageMaker Debugger and Profiler

    • Implement responsible AI practices with SageMaker Clarify

    • Understand AWS storage and data processing services relevant to ML

    • Secure your ML workflows with IAM, KMS, and VPCs

    • Implement CI/CD pipelines for ML using SageMaker and AWS CodePipeline

    • Optimize costs and monitor ML workloads with CloudWatch and AWS Cost Management tools

    • And much more!


    Whether you’re new to machine learning or looking to expand your AWS expertise, this course offers everything you need—practical labs, a full practice exam, and up-to-date content that covers every aspect of Machine Learning on AWS.


    Take this chance today — this can be your first step into a successful machine learning engineering career!

    Looking forward to seeing you inside the course!

    Who this course is for:

    • Aspiring Machine Learning Engineers looking to get certified and kickstart their ML careers
    • Data Scientists, Data Engineers, Developers, and IT Professionals
    • Professionals seeking to expand their knowledge of Machine Learning on AWS

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Nikolai Schuler
    Nikolai Schuler
    Instructor's Courses
    Are you thinking about pursuing a career as a Data Analyst or Data Scientist?Do you ever think that your career could take a leap forward if you would have more knowledge and skills in the world of data? Perhaps you are even feeling overwhelmed by the number of courses available or by the fact that your life is already too full to concentrate on one more course?I am Nikolai Schuler, I am a data scientist and BI consultant, and I have been there too... A few years ago I noticed that the world of data benefits from many new tools and technologies. However, I also realized that it is extremely difficult to get trained in the field: Practical courses with real quality content are rare and are often structured in such a way that they are incompatible with a working life full of other tasks and activities. While going through hours of research and training, I came up with the idea of creating a course that would offer extremely valuable content but that would be at the same time easy to follow due to its structure. My goal is to help as many people as possible to pursue their desired career in this new Digital Age by enabling them to upgrade their data analysis skills. I am proud to say that I am heading in the right direction as my courses have already found their audience in over 170 countries and received thousands of positive feedbacks.I am super excited about equipping you with the skillset to master Data Science and Data Analytics! If you are looking for quality AND approachable training, then jump onboard! I am really looking forward to leveling up your IT skills.-- German version --In meiner Arbeit als Data Scientist sehe ich, dass in der heutigen Zeit neue Tools riesige Vorteile bringen und sie nicht mehr wegzudenken sind. Allerdings sehe ich auch, dass es nicht immer leicht ist, sich neben der täglichen Arbeit in diese neuen Tools einzuarbeiten.Mir selbst ist es auch schwer gefallen Kurse zu finden, die einerseits qualitativ hochwertig und andererseits verständlich und gut strukturiert sind.Aus diesem Grund habe ich mich dazu entschlossen, selbst strukturierte und praxisorientierte Kurse zu erstellen.Da ich sowohl für einfache Anwender als auch für Datenspezialisten Einweisungen in Power BI und anderen Tools gebe, bin ich einerseits technischer Spezialist, habe aber andererseits auch ein gutes Gefühl für die, die nicht die reinen Datenspezialisten sind.Mir zu überlegen, wie man das Wissen wirklich sinnvoll und verständlich vermitteln kann, ist das, was mir dabei Freude macht.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 245
    • duration 25:50:25
    • Release Date 2024/11/21