Companies Home Search Profile

AWS Amazon Bedrock & Generative AI - Beginner to Advanced

Focused View

Rahul Trisal

9:32:45

5 View
  • 1 - Course Introduction.mp4
    05:04
  • 2 - Amazon-Bedrock-and-AWS-Generative-AI-Beginner-to-Advanced-v1.3-16022024.pdf
  • 2 - Amazon-Bedrock-and-AWS-Generative-AI-Beginner-to-Advanced-v1.4-13032024.pdf
  • 2 - Must Watch Tips to Optimize Learning Download Course Content Slides.mp4
    02:36
  • 3 - Section Overview Evolution of Generative AI.mp4
    01:03
  • 4 - What is Artificial Intelligence.mp4
    02:40
  • 5 - Machine Learning Overview Supervised Unsupervised and Reinforced Learning.mp4
    08:01
  • 6 - Deep Learning and Neural Networks Overview.mp4
    09:14
  • 7 - Section Overview Generative AI Foundation Models Concepts.mp4
    00:49
  • 8 - What is Generative AI and Use Cases.mp4
    02:45
  • 9 - How Generative AI works 1 Prompt Completion and Infererences.mp4
    06:52
  • 10 - How Generative AI works Basic Concepts and Terminology 2.mp4
    07:56
  • 11 - Service Offerings in Generative AI from AWS.mp4
    06:50
  • 12 - Section Overview Amazon Bedrock.mp4
    00:42
  • 13 - Amazon Bedrock Introduction.mp4
    04:56
  • 14 - Bedrock Console Walkthrough 1.mp4
    08:13
  • 15 - Bedrock Console Walkthrough 2.mp4
    09:05
  • 16 - Amazon Bedrock Architecture.mp4
    04:41
  • 17 - Amazon Bedrock Infererence Parameters Temperature.mp4
    09:16
  • 18 - Amazon Bedrock Infererence Parameters 2.mp4
    06:40
  • 19 - Bedrock Pricing.mp4
    06:48
  • 20 - Section Introduction Use Case for Media and Entertainment Industry.mp4
    01:13
  • 21 - Use Case Description Media and Entertainment Industry.mp4
    02:02
  • 22 - Use Case Architecture Amazon Bedrock Stability AI Lambda and S3.mp4
    02:09
  • 23 - Boto3-Upgrade-Commands.pdf
  • 23 - Use Case PreRequisites Model Access and Lambda Boto3 Version Upgrade.mp4
    08:15
  • 24 - Creation of S3 Bucket and Lambda Function.mp4
    07:18
  • 25 - AWS Lambda and Bedrock Integration 1.mp4
    17:02
  • 25 - pythoncode-lambda-movieposterdesignfunction.zip
  • 26 - AWS Lambda and Bedrock Integration 2.mp4
    08:13
  • 27 - Storing the Image generated by Bedrock in S3 Bucket.mp4
    09:56
  • 28 - Generating a Pre Signed URL for Image in S3 Bucket.mp4
    07:36
  • 29 - AWS API Gateway and Lambda Integration.mp4
    09:44
  • 30 - End to End Demo.mp4
    03:21
  • 31 - Section Introduction Use Case 2 Text Summarization.mp4
    00:43
  • 32 - Text Summarization Use Case Description and Architecture.mp4
    02:32
  • 33 - Creation of AWS Lambda function and Boto3 upgrade.mp4
    02:35
  • 34 - Writing the AWS Lambda function to connect to Bedrock Service 1.mp4
    11:34
  • 34 - pythoncode-lambda-demomanufacturing.zip
  • 35 - Writing the AWS Lambda function to connect to Bedrock Service 2.mp4
    16:37
  • 35 - pythoncode-lambda-demomanufacturing.zip
  • 36 - Create REST API using AWS API Gateway and Lambda Integration.mp4
    05:48
  • 37 - End to End Demo.mp4
    03:12
  • 38 - Chatbot Demo of what we will Build and Architecture.mp4
    05:59
  • 39 - Chatbot Environment Setup before coding.mp4
    13:13
  • 40 - Chatbot Backend 1.mp4
    14:05
  • 40 - Chatbot-code.zip
  • 41 - Chatbot Backend 2.mp4
    08:15
  • 42 - Chatbot Frontend.mp4
    06:19
  • 43 - Chatbot End to End Demo.mp4
    01:29
  • 44 - HR Q A with RAG Demo of what we will Build.mp4
    02:58
  • 45 - Optional Lecture Overview of Vectors Embedding Vector DB and Search.mp4
    15:28
  • 46 - HR Q A with RAG Architecture for the Use Case.mp4
    07:42
  • 47 - RAG Environment Setup before coding.mp4
    02:34
  • 47 - RAG-Install.pdf
  • 48 - HR QA with RAG HandsOn Data Load Part 1.mp4
    08:25
  • 48 - data-load-test.zip
  • 48 - rag-backend.zip
  • 49 - HR QA with RAG HandsOn Data Transform Part 2.mp4
    08:23
  • 49 - data-split-test.zip
  • 49 - rag-backend.zip
  • 50 - HR QA with RAG HandsOn Embedding Vector Store Index Part 3.mp4
    10:22
  • 50 - rag-backend.zip
  • 51 - HR QA with RAG HandsOn LLM Creation Context Part 4.mp4
    07:34
  • 51 - rag-backend.zip
  • 52 - HR QA with RAG HandsOn Frontend and Final Demo.mp4
    06:02
  • 52 - rag-frontend.zip
  • 53 - HR QA with RAG End to End Demo.mp4
    01:25
  • 54 - Demo of what we will Build Amazon Bedrock Knowledge Base Lambda API Gateway.mp4
    06:07
  • 55 - What is Bedrock Knowledge Base Concept and Architecture.mp4
    05:09
  • 56 - Creation of Amazon Bedrock Knowledge Base.mp4
    10:44
  • 57 - Retrieve API and RetrieveAndGenerate API for data retrieval Concept.mp4
    04:50
  • 58 - Knowledge Base and AWS Lambda Creation Part 1.mp4
    16:01
  • 59 - Knowledge Base and AWS Lambda Creation Boto3 upgrade Part 2.mp4
    02:59
  • 60 - Knowledge Base and AWS Lambda Creation Part 3.mp4
    10:49
  • 61 - Knowledge Base REST API creation and Lambda Integration.mp4
    06:20
  • 62 - Knowledge Base Clean up To avoid charges.mp4
    01:33
  • 63 - Section Overview GenAI Project Lifecycle and Use Case Identification.mp4
    00:31
  • 64 - Overview of GenAI Project Lifecycle.mp4
    02:40
  • 65 - GenAI Use Case Identification Approach.mp4
    02:47
  • 66 - Section Overview Foundation Model Selection for your Use Case.mp4
    00:43
  • 67 - Foundation Model Selection Criteria Theory Part 1.mp4
    04:24
  • 68 - Foundation Model Selection Criteria Theory Part 2.mp4
    06:59
  • 69 - Foundation Model Selection Criteria HandsOn.mp4
    11:05
  • 70 - Section Overview Prompt Engineering.mp4
    00:48
  • 71 - Prompt Engineering 1.mp4
    05:46
  • 72 - Prompt Engineering 2.mp4
    07:22
  • 73 - Prompt Engineering Techinques.mp4
    04:34
  • 74 - Steps to engineer a good prompt.mp4
    01:13
  • 75 - Section Overview Fine Tuning of Foundation Model.mp4
    00:40
  • 76 - Fine Tuning of Foundation Model Overview.mp4
    03:47
  • 77 - Fine Tuning of Foundation Model Architecture.mp4
    03:12
  • 78 - Amazon Bedrock Data Privacy Challenges.mp4
    01:36
  • 79 - Fine Tuning of Foundation Models Hands On.mp4
    11:00
  • 79 - manufacturingusecase-finetuningdata.zip
  • 80 - Amazon CodeWhisperer Introduction.mp4
    01:20
  • 81 - Amazon CodeWhisperer Installation.mp4
    02:00
  • 82 - Amazon CodeWhisperer Create S3 bucket.mp4
    06:51
  • 83 - Amazon CodeWhisperer Create VPC and RDS.mp4
    13:52
  • 84 - Basic Python Programming Refresher Part 1.mp4
    08:01
  • 84 - python-refresher.zip
  • 85 - Basic Python Programming Refresher Par 2.mp4
    15:11
  • 86 - AWS Lambda Overview.mp4
    05:25
  • 87 - AWS Lambda Invocation.mp4
    03:15
  • 88 - Boto3 Introduction.mp4
    09:00
  • 89 - AWS API Gateway Refresher.mp4
    29:57
  • Description


    Build Chatbot, Image Generation, RAG, Text Summarize Apps using Bedrock and Langchain. No prior AI/ML/Coding exp. req.

    What You'll Learn?


    • Learn fundamentals about AI, Machine Learning and Artificial Neural Networks.
    • Learn how Generative AI works and deep dive into Foundation Models.
    • Amazon Bedrock – Detailed Console Walkthough, Bedrock Architecture, Pricing and Inference Parameters.
    • Use Case 1: Media and Entertainment Industry: Generate Movie Poster Design using API Gateway, S3 and Stable Diffusion Foundation Model
    • Use Case 2: Text Summarization for Manufacturing Industry using API Gateway, S3 and Cohere Foundation Model
    • Use Case 3 - Build a Chatbot using Bedrock - Llama 2 Foundation Model, Langchain and Streamlit
    • Use Case 4- Employee HR Q & A App with Retrieval Augmented Generation (RAG) - Bedrock - Claude Foundation Model + Langchain + FAISS + Streamlit
    • Use Case 5 : Serverless e-Learning App using Bedrock Knowledge Base + Claude FM + AWS Lambda + API Gateway
    • GenAI Project Lifecycle: Phase 1 - Use Case Selection - Discuss about various phases of GenAI and How to identify right use case
    • GenAI Project Lifecycle: Phase 2 - Foundation Model Selection - Theory and Handson using AWS Bedrock Model Evaluation Service
    • GenAI Project Lifecycle: Phase 3 - Prompt Engineering - Factors Impacting Prompt design - Claude, Amazon Titan, Stability Diffusion, Prompt design Techniques
    • GenAI Project Lifecycle: Phase 4 - Fine Tuning of Foundation Models - Theory and Hands-On
    • Use Case 6 : Code Generation using AWS CodeWhisperer and CDK - In Typescript
    • Python Basics Refresher
    • AWS Lambda and API Gateway Refresher

    Who is this for?


  • The course is designed to help you switch careers and move into lucrative Generative AI and Amazon Bedrock roles.
  • What You Need to Know?


  • There are no course pre-requisites for this course except basic AWS Knowledge. I will provide basic overview of AI/ML concepts and have included Python, AWS Lambda and API Gateway refresher at end of course in case you are not familiar with python coding or these AWS services.
  • More details


    Description

    Amazon Bedrock and GenAI Course :

    ***Hands - On Use Cases implemented as part of this course***

    Use Case 1 - Generate Poster Design for Media Industry using  API Gateway, S3 and Stable Diffusion Foundation Model

    Use Case 2 - Text Summarization for Manufacturing Industry using API Gateway, S3 and Cohere Foundation Model

    Use Case 3 - Build a Chatbot using Amazon Bedrock - Llama 2, Langchain and Streamlit.

    Use Case 4- Build an Employee HR Q & A Application with Retrieval Augmented Generation (RAG) -

                          Amazon Bedrock (Claude Foundation Model) + Langchain (Ochestrator)+ FAISS (Vector DB) + Streamlit

    Use Case 5 - Serverless e-Learning App using Bedrock Knowledge Base + Claude FM + AWS Lambda + API Gateway

    Use Case 6 - Code Generation using AWS CodeWhisperer and CDK - In Typescript


    • Welcome to the most comprehensive guide on Amazon Bedrock and Generative AI on AWS from a practising AWS Solution Architect and best-selling Udemy Instructor.

    • This course will start from absolute basics on AI/ML, Generative AI and Amazon Bedrock and teach you how to build end to end enterprise apps on Image Generation using Stability Diffusion Foundation, Text Summarization using Cohere, Chatbot using Llama 2,Langchain, Streamlit and Code Generation using Amazon CodeWhisperer.

    • The focus of this course is to help you switch careers and move into lucrative Generative AI roles.

    • There are no course pre-requisites for this course except basic AWS Knowledge. I will provide basic overview of AI/ML concepts and have included Python, AWS Lambda and API Gateway refresher at end of course in case you are not familiar with python coding or these AWS services.

    • I will continue to update this course as the GenAI and Bedrock evolves to give you a detailed understanding and learning required in enterprise context, so that you are ready to switch careers.


      Detailed Course Overview

    • Section 2 - Evolution of Generative AI: Learn fundamentals about AI, Machine Learning and Artificial Neural Networks (Layers, Weights & Bias).

    • Section 3 - Generative AI & Foundation Models Concepts: Learn about How Generative AI works (Prompt, Inference, Completion, Context Window etc.) & Detailed Walkthrough of Foundation Model working.

    • Section 4 - Amazon Bedrock – Deep Dive: Do detailed Console Walkthough, Bedrock Architecture, Pricing and Inference Parameters.

    • Section 5 - Use Case 1: Media and Entertainment Industry: Generate Movie Poster Design using API Gateway, S3 and Stable Diffusion Foundation Model

    • Section 6 - Use Case 2: Text Summarization for Manufacturing Industry using API Gateway, S3 and Cohere Foundation Model

    • Section 7 - Use Case 3 : Build a Chatbot using Bedrock - Llama 2, Langchain and Streamlit

    • Section 8 - Use Case 4- Build a Employee HR Q & A Application with Retrieval Augmented Generation (RAG) -

                              Amazon Bedrock (Claude Foundation Model) + Langchain (Ochestrator)+ FAISS (Vector DB) + Streamlit

    • Section 9 - Serverless e-Learning App using Bedrock Knowledge Base + Claude FM + AWS Lambda + API Gateway

    • Section 10 - GenAI Project Lifecycle: Phase 1 - Use Case Selection - Discuss about various phases of GenAI and How to identify right use case

    • Section 11 - GenAI Project Lifecycle: Phase 2 - Foundation Model Selection - Theory and Handson using AWS Bedrock Model Evaluation Service

    • Section 12 - GenAI Project Lifecycle: Phase 3 - Prompt Engineering - Factors Impacting Prompt design, Prompt design Techniques (Zero Shot, One Shot.), Good practices for writing prompts for Claude, Titan and Stability AI Foundation Models

    • Section 13 - GenAI Project Lifecycle: Phase 4 - Fine Tuning of Foundation Models - Theory and Hands-On

    • Section 14 - Code Generation using AWS CodeWhisperer and CDK - In Typescript

    • Section 15 - Python Basics Refresher

    • Section 16 - AWS Lambda Refresher

    • Section 17 - AWS API Gateway Refresher

    Services Used in the Course :

    1. Amazon Bedrock

    2. Llama 2 Foundation Model

    3. Cohere Foundation Model

    4. Stability Diffusion Model

    5. Claude Foundation Model from Anthropic

    6. Bedrock Knowledge Base

    7. Langchain - Chains and Memory Modules

    8. FAISS Vector Store

    9. AWS Code Generation using AWS Code Whisperer

    10. API Gateway

    11. Lambda

    12. Streamlit

    13. S3

    14. Prompt design Techniques (Zero Shot, One Shot.)  for Claude, Titan and Stability AI Foundation Models (LLMs)

    15. Fine Tuning Foundation Models - Theory and Hands-On

    16. Python

    17. Evaluation of Foundation Models - Theory and Hands-On

    18. Basics of AI, ML, Artificial Neural Networks

    19. Basics of Generative AI

    20. Everything related to AWS Amazon Bedrock

    Who this course is for:

    • The course is designed to help you switch careers and move into lucrative Generative AI and Amazon Bedrock roles.

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Rahul Trisal
    Rahul Trisal
    Instructor's Courses
    Rahul Trisal is a Senior Consultant with more than 15 years’ experience focused on AWS Cloud Strategy, Architecture and Migration. Hands-On experience with Large Scale Data Center Migration to Cloud (200+ applications).Key AWS Services Expertise – Hands on expertise with CloudFormation (YAML), EC2, S3, FSx, EFS, AWS Transfer Family, CloudWatch, Data Sync, Lambda, ELB, Autoscaling, FCI Cluster (SQL DB), Route 53, SSM Automation, Kinesis Data Streams and Firehose, AWS Lambda, Python, Auto Scaling, Auto Healing strategies and many other services.Key Applications Migrated to AWS – Business Apps - Three tier Web Apps, ERP, File Share apps, Infrastructure Apps - DNS application, ControlM, SFTP, Monitoring AppsCreate and post content on AWS Careers, Architecture and Certification on – Udemy Course , my AWS YouTube channel and LinkedIn and conduct in-house trainingsPreviously worked in USA, UK, Africa and Latin America geographies for 10 years (2011- Nov 2019) as Consultant in various roles.Certifications: Cloud: 6X Certified- AWS Certified Solution Architect - Professional- AWS Certified Solution Architect - Associate- AWS SysOps Certified - Associate- IBM Bluemix Cloud Architect- AWS Cloud Practioner- Azure FundamentalAgile: o SAFe Program Consultant (SPC 5.0)o Certified Product Owner (SAFe PO/PM)o Certified Scrum Master (PSM-1)
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 89
    • duration 9:32:45
    • English subtitles has
    • Release Date 2024/05/10