Companies Home Search Profile

Artificial Intelligence and Machine Learning Fundamentals

Focused View

7:46:22

13 View
  • 01.01-course overview .mp4
    10:40
  • 01.02-installation and setup .mp4
    04:30
  • 01.03-lesson overview .mp4
    03:21
  • 01.04-introduction to ai and machine learning.mp4
    08:13
  • 01.05-how does ai solve real world problems .mp4
    14:22
  • 01.06-fields and applications of artificial intelligence.mp4
    08:30
  • 01.07-ai tools and learning models .mp4
    06:45
  • 01.08-the role of python in artificial intelligence .mp4
    14:17
  • 01.09-a brief introduction to the numpy library.mp4
    06:58
  • 01.10-python for game ai .mp4
    11:52
  • 01.11-breadth first search and depth first search .mp4
    13:58
  • 01.12-lesson summary .mp4
    02:06
  • 02.01-lesson overview.mp4
    11:04
  • 02.02-heuristics.mp4
    12:49
  • 02.03-tic-tac-toe .mp4
    10:04
  • 02.04-pathfinding with the a algorithm .mp4
    07:35
  • 02.05-introducing the a algorithm .mp4
    19:29
  • 02.06-game ai with the minmax algorithm .mp4
    09:34
  • 02.07-game ai with alpha-beta pruning.mp4
    08:17
  • 02.08-lesson summary .mp4
    01:23
  • 03.01-lesson overview .mp4
    02:35
  • 03.02-linear regression with one variable .mp4
    13:15
  • 03.03-fitting a model on data with scikit-learn.mp4
    13:51
  • 03.04-linear regression with multiple variables.mp4
    10:41
  • 03.05-preparing data for protection.mp4
    09:15
  • 03.06-polynomial and support vector regression .mp4
    13:37
  • 03.07-lesson summary .mp4
    01:31
  • 04.01-the fundamentals of classification part 1.mp4
    00:53
  • 04.02-the fundamentals of classification part 2.mp4
    06:36
  • 04.03-the k-nearest neighbor classifier.mp4
    12:03
  • 04.04-classification with support vector machines.mp4
    13:27
  • 04.05-lesson summary.mp4
    13:08
  • 05.01-lesson overview.mp4
    01:18
  • 05.02-introduction to decision trees.mp4
    14:03
  • 05.03-entropy.mp4
    07:30
  • 05.04-gini impurity.mp4
    11:08
  • 05.05-precision and recall.mp4
    15:34
  • 05.06-random forest classifier.mp4
    09:04
  • 05.07-random forest classification using scikit-learn.mp4
    06:42
  • 05.08-lesson summary.mp4
    01:31
  • 06.01-lesson overview.mp4
    01:22
  • 06.02-introduction to clustering.mp4
    11:28
  • 06.03-the k-means algorithm.mp4
    13:38
  • 06.04-mean shift algorithm.mp4
    12:58
  • 06.05-lesson summary.mp4
    01:31
  • 07.01-lesson overview.mp4
    01:14
  • 07.02-tensorflow for python.mp4
    13:06
  • 07.03-introduction to neural networks.mp4
    15:39
  • 07.04-forward and backward propagation.mp4
    14:11
  • 07.05-training the tensorflow model.mp4
    09:02
  • 07.06-deep learning.mp4
    05:35
  • 07.07-lesson summary.mp4
    03:09
  • 9781789953671 Code.zip
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Packt is a publishing company founded in 2003 headquartered in Birmingham, UK, with offices in Mumbai, India. Packt primarily publishes print and electronic books and videos relating to information technology, including programming, web design, data analysis and hardware.
    • language english
    • Training sessions 52
    • duration 7:46:22
    • Release Date 2024/03/16