Companies Home Search Profile

Apache Spark and Scala

Focused View

Insculpt Technologies

7:40:00

94 View
  • 001 1.1 Overview of Big Data.mp4
    03:27
  • 002 1.2 Introduction to Apache Hadoop.mp4
    02:29
  • 003 1.3 Hadoop Distributed File System.mp4
    05:00
  • 004 1.4 Hadoop Map Reduce.mp4
    03:34
  • 005 1.5 Introduction to Apache Spark.mp4
    05:13
  • 006 1.6 Characteristics of Apache Spark.mp4
    02:44
  • 007 1.7 Users and Use Cases of Apache Spark.mp4
    07:45
  • 008 1.8 Job Execution Flow and Spark Execution.mp4
    01:12
  • 009 1.9 Spark Unified Stack.mp4
    01:08
  • 010 1.10 Complete Picture of Apache Spark.mp4
    06:38
  • 011 1.11 Why Spark with Scala.mp4
    02:12
  • 012 1.12 Apache spark Architecture.mp4
    02:17
  • 001 2.1 Introduction to Scala.mp4
    10:15
  • 001 2.1-Introduction-to-Scala.pptx
  • 002 2.2 Scala Basic Syntax.mp4
    05:11
  • 002 2.2-Scala-Basic-Syntax.pptx
  • 003 2.3 Scala Class and Objects.mp4
    04:03
  • 003 2.3-Scala-Class-and-Objects.pptx
  • 004 2.4 If else Statements in Scala.mp4
    08:31
  • 004 2.4-If-else-Statements-in-Scala.pptx
  • 005 2.5 Loops in Scala.mp4
    09:33
  • 005 2.5-Loops-in-Scala.pptx
  • 001 3.1 Functions and Procedures in Scala.mp4
    08:19
  • 001 3.1-Functions-and-Procedures-in-Scala.pptx
  • 002 3.2 Access Modifiers.mp4
    06:25
  • 002 3.2-Access-Modifiers.pptx
  • 003 3.3 Strings and Arrays.mp4
    10:45
  • 003 3.3-String-and-Arrays.pptx
  • 004 3.4 Scala Collections.mp4
    14:30
  • 004 3.4-Scala-Collections.pptx
  • 005 3.5 Scala Traits.mp4
    03:58
  • 005 3.5-Scala-Traits.pptx
  • 006 3.6 Pattern Matching.mp4
    07:25
  • 006 3.6-Pattern-Matching.pptx
  • 007 3.7 Scala Extractors.mp4
    05:42
  • 007 3.7-Scala-Extractors.pptx
  • 008 3.8 Scala Exception Handling.mp4
    03:29
  • 008 3.8-Scala-Exception-Handling.pptx
  • 009 3.9 Scala Files IO.mp4
    09:26
  • 009 3.9-Scala-Files-IO.pptx
  • 001 4.1 Programming with RDDs.mp4
    02:33
  • 002 4.2 Starting with Spark.mp4
    02:16
  • 002 4.2-Starting-with-spark.pptx
  • 003 4.3 Creating RDDs.mp4
    02:10
  • 003 4.3-Creating-RDDs.pptx
  • 004 4.4 RDD Operations.mp4
    03:36
  • 004 4.4-RDD-Operations.pptx
  • 005 4.5 Lifecycle of Spark.mp4
    01:41
  • 005 4.5-Lifecycle-of-Spark.pptx
  • 001 5.1 Spark Caching.mp4
    03:12
  • 001 5.1.Spark-caching.pptx
  • 002 5.2 Common Transformations and Actions.mp4
    06:03
  • 002 5.2.Common-Transformations-and-Actions.pptx
  • 003 5.3 Spark Functions.mp4
    13:56
  • 003 5.3-spark-Functions.pptx
  • 004 5.4 Some more Spark functions.mp4
    10:15
  • 001 6.1 Key Value Pairs.mp4
    05:24
  • 001 6.1-Key-value-pairs.pptx
  • 002 6.2 Aggregate Functions.mp4
    10:55
  • 002 6.2-Aggregate-Functions.pptx
  • 003 6.3 Working with Aggregate Functions.mp4
    20:01
  • 004 6.3-Joins-in-Spark.pptx
  • 004 6.4 Joins in Spark.mp4
    18:44
  • 005 6.4-Practical-on-Word-count-example.pptx
  • 005 6.5 Practical on Word count example.mp4
    07:39
  • 001 7.1 Spark Shared Variables.mp4
    13:47
  • 001 7.1-Spark-shared-variables.pptx
  • 002 7.2 Spark and Fault Tolerance.mp4
    01:53
  • 002 7.2-Spark-and-fault-tolerance.pptx
  • 003 7.3 Broadcast variables.mp4
    11:17
  • 003 7.3-Broadcast-variables.pptx
  • 004 7.4 Numeric RDD Operations.mp4
    03:18
  • 004 7.4-Numeric-RDD-Operations.pptx
  • 005 7.5 Per-Partition Operations.mp4
    11:23
  • 005 7.5-Per-Partition-Operations.pptx
  • 001 8.1 Spark Runtime Architecture.mp4
    02:45
  • 001 8.1-Spark-Runtime-Architecture.pptx
  • 002 8.2 Spark Driver.mp4
    03:41
  • 002 8.2-Spark-Driver.pptx
  • 003 8.3 Executors.mp4
    01:07
  • 003 8.3-Executors.pptx
  • 004 8.4 Cluster Managers.mp4
    06:11
  • 004 8.4-Cluster-Managers.pptx
  • 005 8.5 Cluster Managers II.mp4
    03:14
  • 005 8.5-Cluster-Managers-II.pptx
  • 001 9.1 Introduction to Spark SQL.mp4
    04:59
  • 001 9.1-Introduction-to-Spark-SQL.pptx
  • 002 9.2 Starting Point-SQL Context.mp4
    07:42
  • 002 9.2-Starting-Point-SQL-Context.pptx
  • 003 9.3 Hive with Spark SQL.mp4
    10:20
  • 003 9.4-Hive-with-spark-SQL.pptx
  • 004 9.4 Spark SQL Caching.mp4
    10:28
  • 004 9.5-Spark-SQL-caching.pptx
  • 001 People.json, Employee.json.html
  • external-links.zip
  • 001 11.1 machine learning with mllib.mp4
    06:07
  • 002 11.2 MLib Data Types.mp4
    10:07
  • 003 11.3 labeled point data types.mp4
    08:05
  • 004 11.4 Local Matrices in mllib.mp4
    06:25
  • 005 11.5 MLib Algorithms.mp4
    09:45
  • 006 11.6 Classification and Regression.mp4
    07:58
  • 007 11.7 Clustering.mp4
    12:44
  • 001 12.1 GraphX Introduction.mp4
    08:14
  • 002 12.2 Creating Graphs.mp4
    17:04
  • 003 12.3 Graph Operators.mp4
    08:55
  • 004 12.4 Subgraph Transformation.mp4
    09:12
  • 005 12.5 Computation with map reduce triplets.mp4
    03:43
  • Description


    A complete Guide for Processing Big Data with Spark

    What You'll Learn?


    • Understand the limitations of Hadoop mapreduce and how Spark overcomes these limitations
    • Gain expertise in Scala programming language and its characteristics
    • Able to work with RDDs' and create applications in Spark
    • A thorough understanding about Spark SQL by using SQL queries in Spark

    Who is this for?


  • Students who aspire to gain a deep understanding of Apache Spark
  • Professionals looking for a career in real time big data analytics
  • Big Data and Hadoop Developers who want to analyze data faster
  • More details


    Description

    This course on Apache Spark and Scala aims at providing an advanced expertise in big data Hadoop ecosystem. This course will provide a standard skillset which helps one become a specialist on the top of Big data Hadoop developer. 

    The course starts with a detailed description on limitations of mapreduce and how Spark can help overcome them. Further it covers a deeper dive into the Scala programming language.

    Moving on it covers Spark as a standalone cluster and an understanding of Resiliient Distributed Datasets.

    The course also covers concepts of Spark SQL using SQL queries through SQL context and Hive Queries through Hive context.

    This course certainly provides material required for building a career path from Big data Hadoop developer to BIg data Hadoop architect.


    Who this course is for:

    • Students who aspire to gain a deep understanding of Apache Spark
    • Professionals looking for a career in real time big data analytics
    • Big Data and Hadoop Developers who want to analyze data faster

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Insculpt Technologies
    Insculpt Technologies
    Instructor's Courses
    Insculpt technologies is a leading publisher of development courses which provide in-depth knowledge and high quality training.  Insculpt technologies is serving with a mission of providing right direction to  people who are looking for a career in IT/software industry. Insculpt is the best place for learning  new technologies and making things easy to understand virtually.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 66
    • duration 7:40:00
    • English subtitles has
    • Release Date 2023/03/29