Companies Home Search Profile

Algorithmic Trading with Python Complete Course

Focused View

Satyapal Singh

10:33:57

18 View
  • 1. Introduction to Algorithmic Trading.mp4
    07:44
  • 2. Brokers and APIs.mp4
    06:26
  • 3. Setting up Environment.mp4
    05:56
  • 4. Introduction to Python Tools.mp4
    09:56
  • 1.1 1. arithmetic.zip
  • 1. Arithmetic Operations in Python.mp4
    09:36
  • 2.1 2. data types.zip
  • 2. Data Types.mp4
    09:03
  • 3.1 4. variables.zip
  • 3. Variables.mp4
    09:32
  • 4.1 5. lists.zip
  • 4. Intro to Lists.mp4
    07:37
  • 5. Lists 2.mp4
    08:57
  • 6. Lists 3.mp4
    12:27
  • 7.1 6. tuples-and-strings.zip
  • 7. Tuples.mp4
    06:36
  • 8. Strings 1.mp4
    06:36
  • 9. Strings 2.mp4
    05:54
  • 10.1 7 dictionaries & sets.zip
  • 10. Dictionaries.mp4
    06:25
  • 11. Sets.mp4
    09:28
  • 1.1 1. pandas intro.zip
  • 1.2 AAPL historical data.csv
  • 1.3 bank data.csv
  • 1.4 daily.csv
  • 1.5 data.csv
  • 1.6 IPL.csv
  • 1.7 minute.csv
  • 1.8 missing.csv
  • 1.9 tick.csv
  • 1.10 titanic.csv
  • 1. Introduction to Pandas.mp4
    09:47
  • 2.1 2. pandas series part 1.zip
  • 2. Pandas Series Part 1.mp4
    04:30
  • 3.1 3. pandas series part 2.zip
  • 3. Pandas Series Part 2.mp4
    07:32
  • 4.1 4. pandas series unique.zip
  • 4. Pandas Series Unique.mp4
    05:29
  • 5.1 5. sorting a series.zip
  • 5. Pandas Series Sorting.mp4
    04:35
  • 6.1 6. dataframes intro.zip
  • 6. Introduction to DataFrames.mp4
    05:22
  • 7.1 7 data from csv file.zip
  • 7. Accessing csv files.mp4
    05:10
  • 8.1 8. data inspection.zip
  • 8. Data Inspection.mp4
    06:39
  • 9.1 9. dataframes index.zip
  • 9. Dataframe Indexing.mp4
    03:04
  • 10.1 10. dataframe filter.zip
  • 10. Dataframe Filter.mp4
    02:10
  • 11.1 11. indexing in dataframes.zip
  • 11. Dataframe Indexing Part 2.mp4
    03:20
  • 12.1 12. position based index iloc.zip
  • 12. Position based indexing using iloc.mp4
    07:03
  • 13.1 13. index based slicing iloc.zip
  • 13. Dataframe Slicing using iloc.mp4
    04:27
  • 14.1 14. label based slicing using loc.zip
  • 14. Label based Slicing using loc.mp4
    06:47
  • 15.1 15. loc with numeric index.zip
  • 15. Loc with numeric index.mp4
    03:44
  • 16.1 16. reset index.zip
  • 16. Reset Index.mp4
    03:54
  • 17.1 17. rename columns.zip
  • 17. Rename Columns.mp4
    04:36
  • 18.1 18. conditional filter.zip
  • 18. Conditional Filter.mp4
    05:01
  • 19.1 19. advanced filter dataframe.zip
  • 19. Advanced Filter.mp4
    04:00
  • 20.1 20. handling missing values - part 1.zip
  • 20. Missing Values Part 1.mp4
    02:28
  • 21.1 21. handling missing values - part 2.zip
  • 21. Missing Values Part 2.mp4
    07:03
  • 22.1 22. groupby.zip
  • 22. Group By.mp4
    05:37
  • 1.1 23. introduction to time series data.zip
  • 1. Intro to Time Series.mp4
    03:29
  • 2.1 27 downloading data yfinance api.zip
  • 2. Downloading Data yfinance API.mp4
    03:56
  • 3.1 24. convert string to datetime column.zip
  • 3. String to Datetime.mp4
    04:18
  • 1.1 25. slice time series data.zip
  • 1. Slice Time Series Data.mp4
    03:17
  • 2.1 28. pivot.zip
  • 2. Pivot DataFrame.mp4
    05:12
  • 3.1 26. resample.zip
  • 3. Resample DataFrame.mp4
    08:19
  • 4.1 29. data normalization.zip
  • 4. Data Normalization.mp4
    05:45
  • 1.1 30. calculate price changes.zip
  • 1. Calculate Price Changes.mp4
    03:49
  • 2.1 31. calculate financial returns.zip
  • 2. Calculate Financial Returns.mp4
    02:01
  • 3.1 32. risk vs reward.zip
  • 3. Risk vs Returns.mp4
    04:17
  • 4.1 33. tvpi or multiples.zip
  • 4. TVPI.mp4
    03:54
  • 5.1 34. cagr vs annual returns.zip
  • 5. CAGR.mp4
    03:22
  • 6.1 35. geometric returns.zip
  • 6. Geometric Returns.mp4
    02:45
  • 7.1 36. simple vs compound interest.zip
  • 7. Simple vs Compound Interest.mp4
    07:22
  • 8.1 37 continuous compounding.zip
  • 8. Continuous Compounding.mp4
    05:35
  • 9.1 38. intro to log returns.zip
  • 9. Intro to log Returns.mp4
    04:22
  • 10.1 39. daily returns vs log returns.zip
  • 10. Daily Return vs Log Returns.mp4
    05:41
  • 11.1 40. more about log returns.zip
  • 11. More About Log Returns.mp4
    04:30
  • 1. Instruments for Trading.mp4
    06:21
  • 2. Common Terms in Stock Market - I.mp4
    12:17
  • 3. Common Terms in Stock Market -II.mp4
    13:15
  • 4. Derivatives Risk.mp4
    05:40
  • 5. Intro to Futures.mp4
    11:44
  • 6. Intro to Options.mp4
    05:52
  • 1. Creating Kite Connect App.mp4
    06:07
  • 2.1 login - manual process.zip
  • 2. Manual Login.mp4
    07:18
  • 3.1 access.txt
  • 3.2 security.txt
  • 3.3 selenium kite connect login new.zip
  • 3. Automatic Login using Selenium.mp4
    10:02
  • 4.1 databaselogin.zip
  • 4.2 download instruments.zip
  • 4.3 instruments.zip
  • 4. Downloading Instruments.mp4
    11:55
  • 5.1 daily+ohlc.zip
  • 5.2 databaselogin.zip
  • 5.3 download historical data.zip
  • 5. Download Historical OHLC Data.mp4
    05:50
  • 6.1 databaselogin.zip
  • 6.2 place+orders+using+api.zip
  • 6.3 zerodha+orders+management.zip
  • 6.4 zerodha+wrapper+class.zip
  • 6. Place and Manage Orders.mp4
    09:08
  • 7.1 databaselogin.zip
  • 7.2 other important functions.zip
  • 7. Other Important Functions.mp4
    04:00
  • 8. Introduction to Kite Ticker.mp4
    04:57
  • 9.1 database.zip
  • 9.2 tick.zip
  • 9.3 tick+data+table.zip
  • 9. Downloading Realtime Tick Data.mp4
    09:56
  • 10.1 option chain.zip
  • 10. Option Chain Data.mp4
    07:09
  • 11.1 alarm.wav
  • 11.2 databaselogin.zip
  • 11.3 moniter+prices.zip
  • 11.4 monitor+stock+price.zip
  • 11. Get Price Alerts.mp4
    04:56
  • 1. Introduction to Technical Indicators.mp4
    05:21
  • 2.1 moving averages.zip
  • 2.2 nifty.csv
  • 2. Moving Averages.mp4
    07:36
  • 3.1 macd.zip
  • 3. Moving Average ConvergenceDivergence (MACD).mp4
    06:18
  • 4.1 bollinger bands.zip
  • 4. Bollinger Bands.mp4
    07:11
  • 5.1 atr.zip
  • 5. Average True Range (ATR) Part 1.mp4
    04:48
  • 6. Average True Range (ATR) Part 2.mp4
    07:13
  • 7.1 rsi.zip
  • 7.2 rsi.zip
  • 7. Relative Strength Indicator (RSI) Part 1.mp4
    08:51
  • 8. Relative Strength Indicator (RSI) Part 2.mp4
    09:44
  • 9. Introduction to Supertrend.mp4
    03:44
  • 10.1 Super+Trend.xlsx
  • 10. Supertrend using Google SheetsExcel.mp4
    11:29
  • 11.1 supertrend.zip
  • 11. Supertrend using Python.mp4
    09:38
  • 12. Introduction to Renko.mp4
    05:15
  • 13.1 minute.csv
  • 13.2 renko+-+brick+size.zip
  • 13. Renko using Brick Size.mp4
    05:15
  • 14.1 renko atr display.zip
  • 14. Visualize Renko Chart with ATR.mp4
    04:58
  • 15. Introduction to ADX.mp4
    04:52
  • 16.1 ADX.xlsx
  • 16. ADX using Google SheetExcel.mp4
    07:25
  • 17.1 adx.zip
  • 17. ADX using Python.mp4
    04:57
  • 1. Introduction to Price Action.mp4
    02:56
  • 2. About Candlesticks.mp4
    04:43
  • 3. Support and Resistance.mp4
    04:30
  • 4. Introduction to Pivot Points.mp4
    02:42
  • 5.1 infy2023.csv
  • 5.2 infy5min.csv
  • 5.3 pivot point.zip
  • 5. Pivot Points with Python.mp4
    05:12
  • 1. Introduction to Strategy Development.mp4
    04:33
  • 2.1 mydatabase.zip
  • 2.2 OHLCNifty.csv
  • 2.3 sma+crossover+strategy+basic.zip
  • 2. SMA Strategy Backtesting.mp4
    08:02
  • 3.1 sma+optimal+strategy.zip
  • 3. Strategy Optimization.mp4
    05:21
  • 4.1 Supertrend.zip
  • 4. Supertrend + MACD Strategy Part 1.mp4
    07:03
  • 5. Supertrend + MACD Strategy Part 2.mp4
    07:48
  • 1. Introduction to VPS.mp4
    04:17
  • 2. Virtual Private Server Deployment & Scheduling.mp4
    05:39
  • 3. Accessing strategy from VPS using a browser.mp4
    03:44
  • Description


    Most Comprehensive Algorithmic Trading Course

    What You'll Learn?


    • Python for Algo Trading including Pandas
    • Learn to Develop Trading Bots
    • Use Zerodha Kite Connect API for Algo Trading
    • Create Technical Indicators using python
    • Develop and Backtest Algo Trading Strategies

    Who is this for?


  • Software Developers, Algo Traders, Software Students
  • What You Need to Know?


  • Basics of Stock Market/ Trading
  • Beginner level programming skills
  • More details


    Description

    Welcome to our most comprehensive course, "Algorithmic Trading using Python," where you will embark on a transformative journey into the world of algorithmic trading. This course is designed to provide you with a solid foundation in both Python programming and algorithmic trading strategies, catering to beginners and experienced developers alike.

    The course begins with a thorough exploration of Python's Object Oriented Programming (OOP) to equip you with the essential skills for algorithmic trading. You will delve into data analysis using Pandas, mastering the manipulation of financial data with ease. Utilizing libraries such as Numpy and Matplotlib, you will gain proficiency in numerical computations and data visualization.

    The course covers data normalization and the calculation of financial returns, essential steps in developing robust trading strategies. Dive into finance and investment concepts to understand the intricacies of the market.

    Learn to communicate with broker API using Python code. Automation Login using Selenium. Harness the potential of Zerodha Kite Connect API to implement your strategies seamlessly. In the realm of algorithmic trading, real-time data is paramount. Learn to stream live tick data and efficiently download and clean historical financial data.

    Order Management - Placing orders, modifying, canceling, placing & trail stop loss orders.  This course includes frequently asked questions & prerequisites for the API.

    Use MySQL Database to save and access Data.

    Import and export data using static files.

    Technical indicators play a pivotal role in trading decisions. This course empowers you to develop indicators like Moving Averages, Bollinger Bands, ATR, Relative Strength, MACD, Supertrend, and Renko using Python.

    Take your skills to the next level by learning to deploy your trading bot on a Virtual Private Server, accessible through a user-friendly web page. Achieve the pinnacle of automation as you develop a fully automatic trading bot, ready to navigate the financial markets.

    The course has all working code Jupyter notebooks available in the resources section.

    Whether you're a novice seeking a comprehensive introduction or an experienced developer aiming to enhance your algorithmic trading prowess, this course provides the knowledge and hands-on experience needed to succeed in the dynamic world of algorithmic trading using Python.

    Join us on this exciting journey and unlock the potential of algorithmic trading in the financial markets.

    Who this course is for:

    • Software Developers, Algo Traders, Software Students

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Satyapal Singh
    Satyapal Singh
    Instructor's Courses
    20 years of experience as a Developer, Business Analyst, Investor & TraderDevelopment experience in .Net, Python, Microsoft SQL Server, MySQL, Web Development, Android, and iOS. Broad knowledge of Information Technology.5 years experience as an Investor & 2 years experience in Algo trading.Expert on Zerodha Kite Connect Integration using Python & MySql.Ex Developer at Honeywell International India LtdFounder & Chief Executive at Kimbly LabsCompleted Executive Programme in Algorithmic Trading - EPAT Microsoft Certified Professional (MCP/MCSD)Consultancy services are available.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 102
    • duration 10:33:57
    • Release Date 2024/01/03