Companies Home Search Profile

AI and Meta-Heuristics (Combinatorial Optimization) Python

Focused View

Holczer Balazs

17:23:17

298 View
  • 1. Introduction.mp4
    03:23
  • 2.1 meta_heuristics_ai.zip
  • 2. Slides and source code.html
  • 1. Why to consider graph algorithms.mp4
    03:43
  • 1. What is breadth-first search.mp4
    08:10
  • 2.1 breadthfirstsearch.zip
  • 2. Breadth-first search implementation.mp4
    09:48
  • 3. Applications of breadth-first search.mp4
    02:19
  • 4. Breadth-First Search Quiz.html
  • 1. Course challenge #1 - WebCrawler problem.html
  • 2. What are WebCrawlers (core of search engines).mp4
    05:49
  • 3.1 webcrawler.zip
  • 3. WebCrawler basic implementation.mp4
    09:39
  • 1. What is depth-first search.mp4
    08:52
  • 2.1 depthfirstsearch.zip
  • 2. Depth-first search implementation.mp4
    05:55
  • 3.1 depthfirstsearchrecursion.zip
  • 3. Depth-first search implementation with recursion.mp4
    02:52
  • 4. Depth-first search and stack memory visualization.mp4
    06:01
  • 5. Memory comparison of graph traversal algorithms.mp4
    04:18
  • 6. Applications of depth-first search.mp4
    03:02
  • 7. Depth-First Search Quiz.html
  • 1. Course challenge #2 - maze problem.html
  • 2. Maze problem introduction.mp4
    04:55
  • 3.1 mazeproblem.zip
  • 3. Maze problem implementation.mp4
    13:07
  • 4. Maze problem stack memory visualization.mp4
    06:39
  • 1. What is the A search algorithm.mp4
    09:54
  • 2. A search illustration.mp4
    08:51
  • 3. A search implementation I.mp4
    07:19
  • 4. A search implementation II.mp4
    08:47
  • 5.1 astarsearch.zip
  • 5. A search implementation III.mp4
    02:49
  • 6. Path finding algorithms comparison.mp4
    02:23
  • 7. A Search Quiz.html
  • 1. What are meta-heuristic approaches.mp4
    08:48
  • 2. Heuristics Quiz.html
  • 1. What is simulated annealing.mp4
    09:41
  • 2. Simulated Annealing Quiz.html
  • 1. Simulated annealing implementation I.mp4
    04:54
  • 2. Simulated annealing implementation II.mp4
    07:37
  • 3.1 simulatedannealingfunction.zip
  • 3. Simulated annealing implementation III.mp4
    06:17
  • 1. What is the travelling salesman problem (TSP).mp4
    06:14
  • 2. Travelling salesman problem implementation I.mp4
    07:56
  • 3. Travelling salesman problem implementation II.mp4
    06:32
  • 4. Travelling salesman problem implementation III.mp4
    08:40
  • 5.1 simulatedannealingtsp.zip
  • 5. Travelling salesman problem implementation IV.mp4
    04:21
  • 1. What is the Sudoku problem.mp4
    07:21
  • 2. Sudoku problem implementation I.mp4
    13:12
  • 3. Sudoku problem implementation II.mp4
    13:22
  • 4. Sudoku problem implementation III.mp4
    06:54
  • 5.1 simulatedannealingsudoku.zip
  • 5. Sudoku problem implementation IV.mp4
    02:59
  • 1. Genetic algorithms introduction - basics.mp4
    05:30
  • 2. Genetic algorithms introduction - chromosomes.mp4
    04:19
  • 3. Genetic algorithms introduction - crossover.mp4
    06:37
  • 4. Genetic algorithms introduction - mutation.mp4
    05:31
  • 5. Genetic algorithms introduction - selection.mp4
    04:57
  • 6. Genetic algorithms introduction - the algorithm.mp4
    02:31
  • 7. What is elitism.mp4
    03:54
  • 8. Advantages and limitations of genetic algorithms.mp4
    05:46
  • 9. Genetic Algorithms Quiz.html
  • 1. Genetic algorithm implementation I.mp4
    06:35
  • 2. Genetic algorithm implementation II.mp4
    03:39
  • 3. Genetic algorithm implementation III.mp4
    13:22
  • 4. Genetic algorithm implementation IV.mp4
    04:21
  • 5.1 geneticalgorithmelitism.zip
  • 5. Genetic algorithm implementation V - elitism.mp4
    06:00
  • 1. What is the N-queens problem.mp4
    07:35
  • 2. N queens problem implementation I.mp4
    04:31
  • 3.1 geneticalgorithmnqueens.zip
  • 3. N queens problem implementation II.mp4
    10:30
  • 1. Course challenge #3 - knapsack problem overview.html
  • 2. What is the knapsack problem.mp4
    05:36
  • 3.1 geneticalgorithmknapsack.zip
  • 3. Knapsack problem implementation.mp4
    13:41
  • 1. What is swarm intelligence.mp4
    06:52
  • 2. Particle swarm optimization introduction - basics.mp4
    09:33
  • 3. Particle swarm optimization introduction - the algorithm.mp4
    10:24
  • 4. Exploration and exploitation trade-off.mp4
    06:31
  • 5. Particle Swarm Optimization Quiz.html
  • 1. Particle swarm optimization implementation I.mp4
    09:59
  • 2. Particle swarm optimization implementation II.mp4
    14:25
  • 3.1 particleswarmoptimizationfunction.zip
  • 3. Particle swarm optimization implementation III.mp4
    03:45
  • 1. Game trees introduction.mp4
    08:24
  • 2. Two Player Games Quiz.html
  • 1. Minimax algorithm introduction - basics.mp4
    08:19
  • 2. Minimax algorithm introduction - the algorithm.mp4
    06:32
  • 3. Minimax algorithm introduction - relation to tic-tac-toe.mp4
    06:47
  • 4. Alpha-beta pruning introduction.mp4
    09:06
  • 5. Alpha-beta pruning example.mp4
    08:27
  • 6. Chess problem.mp4
    04:10
  • 7. Game Engines Quiz.html
  • 1. Tic tac toe implementation I.mp4
    07:37
  • 2. Tic tac toe implementation II.mp4
    03:56
  • 3. Tic tac toe implementation III.mp4
    06:54
  • 4. Tic tac toe implementation IV.mp4
    07:59
  • 5. Tic tac toe implementation V.mp4
    05:40
  • 6.1 minimaxtictactoe.zip
  • 6. Tic tac toe implementation VI.mp4
    05:58
  • 7. Minimax stack memory visualization.mp4
    08:04
  • 8.1 minimaxpruningtictactoe.zip
  • 8. Tic tac toe implementation VII - pruning.mp4
    03:54
  • 1. What is reinforcement learning.html
  • 2. Applications of reinforcement learning.mp4
    02:44
  • 1. Markov decision processes basics I.mp4
    05:38
  • 2. Markov decision processes basics II.mp4
    06:21
  • 3. Markov decision processes - equations.mp4
    12:00
  • 4. Markov decision processes - illustration.mp4
    07:49
  • 5. Bellman-equation.mp4
    05:41
  • 6. How to solve MDP problems.mp4
    02:20
  • 7. What is value iteration.mp4
    06:29
  • 8. What is policy iteration.mp4
    03:52
  • 9. Mathematical formulation of reinforcement learning.html
  • 10. Reinforcement Learning Basics Quiz.html
  • 1. Exploration vs exploitation problem.mp4
    03:29
  • 2. N-armed bandit problem introduction.mp4
    08:46
  • 3. N-armed bandit problem implementation.mp4
    11:12
  • 4. Applications AB testing in marketing.mp4
    04:11
  • 5. Exploration vs. Exploitation Quiz.html
  • 1. What is Q learning.mp4
    05:44
  • 2. Q learning introduction - the algorithm.mp4
    07:08
  • 3. Q learning illustration.mp4
    11:06
  • 4. Mathematical formulation of Q learning.html
  • 5. Q Learning Quiz.html
  • 1. Tic tac toe with Q learning implementation I.mp4
    03:43
  • 2. Tic tac toe with Q learning implementation II.mp4
    07:36
  • 3. Tic tac toe with Q learning implementation III.mp4
    07:24
  • 4. Tic tac toe with Q learning implementation IV.mp4
    07:26
  • 5. Tic tac toe with Q learning implementation V.mp4
    04:54
  • 6. Tic tac toe with Q learning implementation VI.mp4
    12:05
  • 7. Tic tac toe with Q learning implementation VII.mp4
    06:21
  • 8.1 qlearningtictactoe.zip
  • 8. Tic tac toe with Q learning implementation VIII.mp4
    05:56
  • 1. Python crash course introduction.html
  • 1. First steps in Python.mp4
    05:49
  • 2. What are the basic data types.mp4
    04:45
  • 3. Booleans.mp4
    02:08
  • 4. Strings.mp4
    07:44
  • 5. String slicing.mp4
    06:47
  • 6. Type casting.mp4
    04:20
  • 7. Operators.mp4
    05:23
  • 8. Conditional statements.mp4
    04:41
  • 9. How to use multiple conditions.mp4
    08:07
  • 10. Exercise conditional statements.html
  • 11. Solution conditional statements.html
  • 12. Logical operators.mp4
    04:04
  • 13. Loops - for loop.mp4
    06:00
  • 14. Loops - while loop.mp4
    04:13
  • 15. Exercise calculating the average.html
  • 16. Solution calculating the average.html
  • 17. What are nested loops.mp4
    02:55
  • 18. Enumerate.mp4
    03:51
  • 19. Break and continue.mp4
    05:32
  • 20. Calculating Fibonacci-numbers.mp4
    02:30
  • 21. Exercise Fibonacci-numbers.html
  • 22. Solution Fibonacci-numbers.html
  • 1. What are functions.mp4
    04:07
  • 2. Defining functions.mp4
    05:24
  • 3. Positional arguments and keyword arguments.mp4
    10:30
  • 4. Returning values.mp4
    02:26
  • 5. Returning multiple values.mp4
    03:14
  • 6. Exercise functions.html
  • 7. Solution functions.html
  • 8. Yield operator.mp4
    05:02
  • 9. Local and global variables.mp4
    02:12
  • 10. What are the most relevant built-in functions.mp4
    04:26
  • 11. What is recursion.mp4
    09:29
  • 12. Exercise recursion.html
  • 13. Solution recursion.html
  • 14. Local vs global variables.mp4
    04:16
  • 15. The __main__ function.mp4
    03:25
  • 1. How to measure the running time of algorithms.mp4
    10:00
  • 2. Data structures introduction.mp4
    03:17
  • 3. What are array data structures I.mp4
    06:55
  • 4. What are array data structures II.mp4
    06:56
  • 5. Lists in Python.mp4
    05:43
  • 6. Lists in Python - advanced operations.mp4
    08:27
  • 7. Lists in Python - list comprehension.mp4
    05:56
  • 8. (!!!) Python lists and arrays.html
  • 9. Exercise list comprehension.html
  • 10. Solution list comprehension.html
  • 11. Measuring running time of lists.html
  • 12. What are tuples.mp4
    03:58
  • 13. Mutability and immutability.mp4
    04:30
  • 14. What are linked list data structures.mp4
    08:13
  • 15. Doubly linked list implementation in Python.mp4
    05:32
  • 16. Hashing and O(1) running time complexity.mp4
    08:03
  • 17. Dictionaries in Python.mp4
    09:41
  • 18. Sets in Python.mp4
    09:49
  • 19. Exercise constructing dictionaries.html
  • 20. Solution constructing dictionaries.html
  • 21. Sorting.mp4
    10:44
  • 1. What is object oriented programming (OOP).mp4
    02:18
  • 2. Class and objects basics.mp4
    03:00
  • 3. Using the constructor.mp4
    06:00
  • 4. Class variables and instance variables.mp4
    04:46
  • 5. Exercise constructing classes.html
  • 6. Solution constructing classes.html
  • 7. Private variables and name mangling.mp4
    04:31
  • 8. What is inheritance in OOP.mp4
    03:49
  • 9. The super keyword.mp4
    04:24
  • 10. Function (method) override.mp4
    02:34
  • 11. What is polymorphism.mp4
    04:25
  • 12. Polymorphism and abstraction example.mp4
    06:10
  • 13. Exercise abstraction.html
  • 14. Solution abstraction.html
  • 15. Modules.mp4
    06:00
  • 16. The __str__ function.mp4
    03:16
  • 17. Comparing objects - overriding functions.mp4
    08:00
  • 1. What is the key advantage of NumPy.mp4
    04:12
  • 2. Creating and updating arrays.mp4
    07:36
  • 3. Dimension of arrays.mp4
    09:12
  • 4. Indexes and slicing.mp4
    07:59
  • 5. Types.mp4
    04:43
  • 6. Reshape.mp4
    07:53
  • 7. Exercise reshape problem.html
  • 8. Solution reshape problem.html
  • 9. Stacking and merging arrays.mp4
    06:17
  • 10. Filter.mp4
    03:39
  • 11. Running time comparison arrays and lists.html
  • 1.1 meta_heuristics_ai.zip
  • 1. Slides and source code.html
  • Description


    Graph Algorithms, Genetic Algorithms, Simulated Annealing, Swarm Intelligence, Heuristics, Minimax and Meta-Heuristics

    What You'll Learn?


    • understand why artificial intelligence is important
    • understand pathfinding algorithms (BFS, DFS and A* search)
    • understand heuristics and meta-heuristics
    • understand genetic algorithms
    • understand particle swarm optimization
    • understand simulated annealing

    Who is this for?


  • Beginner Python programmers curious about artificial intelligence and combinatorial optimization
  • More details


    Description

    This course is about the fundamental concepts of artificial intelligence and meta-heuristics with Python. This topic is getting very hot nowadays because these learning algorithms can be used in several fields from software engineering to investment banking. Learning algorithms can recognize patterns which can help detecting cancer for example. We may construct algorithms that can have a very  good guess about stock price movement in the market.

    ### PATHFINDING ALGORITHMS ###

    Section 1 - Breadth-First Search (BFS)

    • what is breadth-first search algorithm

    • why to use graph algorithms in AI

    Section 2 - Depth-First Search (DFS)

    • what is depth-first search algorithm

    • implementation with iteration and with recursion

    • depth-first search stack memory visualization

    • maze escape application

    Section 3 - A* Search Algorithm

    • what is A* search algorithm

    • what is the difference between Dijkstra's algorithm and A* search

    • what is a heuristic

    • Manhattan distance and Euclidean distance

    ### META-HEURISTICS ###

    Section 4 - Simulated Annealing

    • what is simulated annealing

    • how to find the extremum of functions

    • how to solve combinatorial optimization problems

    • travelling salesman problem (TSP)

    • solving the Sudoku problem with simulated annealing

    Section 5 - Genetic Algorithms

    • what are genetic algorithms

    • artificial evolution and natural selection

    • crossover and mutation

    • solving the knapsack problem and N queens problem

    Section 6 - Particle Swarm Optimization (PSO)

    • what is swarm intelligence

    • what is the Particle Swarm Optimization algorithm

    ### GAMES AND GAME TREES ###

    Section 7 - Game Trees

    • what are game trees

    • how to construct game trees

    Section 8 - Minimax Algorithm and Game Engines

    • what is the minimax algorithm

    • what is the problem with game trees?

    • using the alpha-beta pruning approach

    • chess problem

    Section 9 - Tic Tac Toe with Minimax

    • Tic Tac Toe game and its implementation

    • using minimax algorithm

    • using alpha-beta pruning algorithm

    ### REINFORCEMENT LEARNING ###

    • Markov Decision Processes (MDPs)

    • reinforcement learning fundamentals

    • value iteration and policy iteration

    • exploration vs exploitation problem

    • multi-armed bandits problem

    • Q learning algorithm

    • learning tic tac toe with Q learning

    ### PYTHON PROGRAMMING CRASH COURSE ###

    • Python programming fundamentals

    • basic data structures

    • fundamentals of memory management

    • object oriented programming (OOP)

    • NumPy

    In the first chapters we are going to talk about the fundamental graph algorithms - breadth-first search (BFS), depth-first search (DFS) and A* search algorithms. Several advanced algorithms can be solved with the help of graphs, so in my opinion these algorithms are crucial.

    The next chapters are about heuristics and meta-heuristics. We will consider the theory as well as the implementation of simulated annealing, genetic algorithms and particle swarm optimization - with several problems such as the famous N queens problem, travelling salesman problem (TSP) etc.

    Thanks for joining the course, let's get started!

    Who this course is for:

    • Beginner Python programmers curious about artificial intelligence and combinatorial optimization

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Holczer Balazs
    Holczer Balazs
    Instructor's Courses
    My name is Balazs Holczer. I am from Budapest, Hungary. I am qualified as a physicist. At the moment I am working as a simulation engineer at a multinational company. I have been interested in algorithms and data structures and its implementations especially in Java since university. Later on I got acquainted with machine learning techniques, artificial intelligence, numerical methods and recipes such as solving differential equations, linear algebra, interpolation and extrapolation. These things may prove to be very very important in several fields: software engineering, research and development or investment banking. I have a special addiction to quantitative models such as the Black-Scholes model, or the Merton-model.Take a look at my website if you are interested in these topics!
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 164
    • duration 17:23:17
    • Release Date 2022/12/06