Companies Home Search Profile

Advanced R

Focused View

Francisco Juretig

4:41:21

6 View
  • 1 - Introduction.mp4
    04:29
  • 2 - Creating Packages.mp4
    19:55
  • 2 - packages.zip
  • 2 - process.freelancer.data5-1.0.tar.zip
  • 3 - Functionals and closures.mp4
    12:27
  • 3 - functional.zip
  • 4 - Environments.mp4
    19:58
  • 4 - environments.zip
  • 5 - Parsing Dates.mp4
    14:43
  • 5 - birth-dates-table.csv
  • 5 - dates.zip
  • 6 - Regex Part 1.mp4
    11:35
  • 6 - regex-in-R.zip
  • 7 - Regex Part 2.mp4
    06:03
  • 7 - regex-in-R.zip
  • 8 - Parsing Websites.mp4
    19:59
  • 8 - websites.zip
  • 9 - Profiling.mp4
    09:17
  • 9 - profiling.zip
  • 10 - Example1.zip
  • 10 - Rcpp Part 1.mp4
    15:01
  • 11 - Example2.zip
  • 11 - Rcpp 2 Part 2.mp4
    19:54
  • 12 - Example3.zip
  • 12 - Rcpp sugar.mp4
    14:04
  • 13 - Parallel computing.mp4
    19:59
  • 13 - parallel-rcpp.zip
  • 14 - Calling Python from R.mp4
    08:25
  • 14 - r-to-python.zip
  • 15 - Calling R from Python.mp4
    19:50
  • 15 - code1.zip
  • 16 - Executing Java code in R.mp4
    19:49
  • 16 - RJava.zip
  • 17 - Calling R from Java using Rserve.mp4
    11:08
  • 17 - main.zip
  • 8 - Sqldf.html
  • 18 - The Sqldf package Part 1.mp4
    16:50
  • 18 - dates-worked.csv
  • 18 - freelancers.csv
  • 18 - sqldf.zip
  • 19 - The Sqldf package Part 2.mp4
    17:55
  • 19 - dates-worked.csv
  • 19 - freelancers.csv
  • 19 - sqldf.zip
  • Description


    Become an R master and dominate data science

    What You'll Learn?


    • Build R packages
    • Write C++ code in R via Rcpp
    • Do complex date parsing
    • Profile and benchmark their programs
    • Build parallel code
    • Parse complex text via Regex
    • And much more!

    Who is this for?


  • Intermediate and advanced R users
  • Basic R users (with a few weeks of experience) can also take this course. They might find some parts difficult, specially if they lack programming experience
  • What You Need to Know?


  • A few weeks experience with R is absolutely necessary, and ideally some months of experience would be better
  • Being able to code functions, manipulate data, and be comfortable writing complex R code
  • Some experience with other programming languages (such as Python - Java) would be beneficial, but it is not necessary
  • More details


    Description

    This course is intended for R and data science professionals aiming to master R. Intermediate and advanced users, will both find that this course will separate them from the rest of people doing analytics with R. We don't recommend this course on beginners.

    We start by explaining how to work with closures, environments, dates, and more advanced topics. We then move into regex expressions and parsing html data. We explain how to write R packages, and write the proper documentation that the CRAN team expects if you want to upload your code into R's libraries.  After that we introduce the necessary skills for profiling your R code. We then move into C++ and Rcpp, and we show how to write super fast C++ parallel code that uses OpenMP. Understanding and mastering Rcpp will allow you to push your R skills to another dimension. When your colleagues are writing R functions, you will be able to get Rcpp+OpenMP equivalent code running 4-8X times faster. We then move into Python and Java, and show how these can be called from R and vice-versa. This will be really helpful for writing code that leverages the excellent object oriented features from this pair of languages. You will be able to build your own classes in Java or Python that store the data that you get from R. Since the Python community is growing so fast, and producing so wonderful packages, it's great to know that you will be able to call any function from any Python package directly from R. We finally explain how to use sqldf, which is a wonderful package for doing serious, production grade data processing in R. Even though it has its limitations, we will be able to write SQL queries directly in R. We will certainly show how to bypass those limitations, such as its inability to write full joins using specific tricks. 

    All the code (R,JAVA,C++,.csv) used in this course is available for download, and all the lectures can be downloaded as well. Our teaching strategy is to present you with examples carrying the minimal complexity, so we hope you can easily follow each lecture. In case you have doubts or comments, feel free to send us a message


    Who this course is for:

    • Intermediate and advanced R users
    • Basic R users (with a few weeks of experience) can also take this course. They might find some parts difficult, specially if they lack programming experience

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Francisco Juretig
    Francisco Juretig
    Instructor's Courses
    I worked for 7+ years exp as statistical programmer in the industry. Expert in programming, statistics, data science, statistical algorithms. I have wide experience in many programming languages. Regular contributor to the R community, with 3 published packages. I also am expert SAS programmer. Contributor to scientific statistical journals. Latest publication on the Journal of Statistical Software.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 19
    • duration 4:41:21
    • English subtitles has
    • Release Date 2024/04/29