Companies Home Search Profile

Advanced Algorithms Data

Focused View

23:38:44

107 View
  • 1 - Chapter 1 Introducing data structures.mp4
    09:08
  • 2 - Part 1. Improving over basic data structures.mp4
    02:13
  • 3 - Chapter 1 Describing a data structure.mp4
    06:15
  • 4 - Chapter 1 Packing your knapsack - Data structures meet the real world.mp4
    05:53
  • 5 - Chapter 1 Algorithms to the rescue.mp4
    09:54
  • 6 - Chapter 2 Improving priority queues - d-way heaps.mp4
    08:35
  • 7 - Chapter 2 Solutions at hand - Keeping a sorted list.mp4
    08:26
  • 8 - Chapter 2 Concrete data structures.mp4
    07:57
  • 9 - Chapter 2 Priority, min-heap, and max-heap.mp4
    05:54
  • 10 - Chapter 2 How to implement a heap.mp4
    08:13
  • 11 - Chapter 2 PushDown.mp4
    08:31
  • 12 - Chapter 2 Top.mp4
    09:27
  • 13 - Chapter 2 Heapify.mp4
    09:45
  • 14 - Chapter 2 Use case - Find the k largest elements.mp4
    05:35
  • 15 - Chapter 2 More use cases.mp4
    11:48
  • 16 - Chapter 2 Analysis of branching factor.mp4
    08:55
  • 17 - Chapter 2 Performance analysis - Finding the best branching factor.mp4
    08:53
  • 18 - Chapter 2 Interpreting results.mp4
    06:50
  • 19 - Chapter 2 The mystery with heapify.mp4
    06:24
  • 20 - Chapter 3 Treaps - Using randomization to balance binary search trees.mp4
    08:01
  • 21 - Chapter 3 Treap.mp4
    11:29
  • 22 - Chapter 3 A few design questions.mp4
    09:33
  • 23 - Chapter 3 Delete.mp4
    07:28
  • 24 - Chapter 3 Applications - Randomized treaps.mp4
    10:54
  • 25 - Chapter 3 Performance analysis and profiling.mp4
    07:31
  • 26 - Chapter 3 Profiling height.mp4
    11:56
  • 27 - Chapter 3 Profiling memory usage.mp4
    07:55
  • 28 - Chapter 4 Bloom filters - Reducing the memory for tracking content.mp4
    06:46
  • 29 - Chapter 4 Alternatives to implementing a dictionary.mp4
    05:09
  • 30 - Chapter 4 Concrete data structures.mp4
    08:12
  • 31 - Chapter 4 Binary search tree - Every operation is logarithmic.mp4
    09:56
  • 32 - Chapter 4 Implementation.mp4
    07:48
  • 33 - Chapter 4 Constructor.mp4
    08:38
  • 34 - Chapter 4 Applications.mp4
    08:42
  • 35 - Chapter 4 Why Bloom filters work.mp4
    08:23
  • 36 - Chapter 4 Performance analysis.mp4
    08:18
  • 37 - Chapter 4 Explanation of the false-positive ratio formula.mp4
    05:08
  • 38 - Chapter 4 Improved variants.mp4
    10:00
  • 39 - Chapter 5 Disjoint sets - Sub-linear time processing.mp4
    06:53
  • 40 - Chapter 5 Reasoning on solutions.mp4
    06:05
  • 41 - Chapter 5 Naive solution.mp4
    07:36
  • 42 - Chapter 5 Using a tree-like structure.mp4
    07:13
  • 43 - Chapter 5 Heuristics to improve the running time.mp4
    10:42
  • 44 - Chapter 5 Applications.mp4
    06:02
  • 45 - Chapter 6 Trie, radix trie - Efficient string search.mp4
    11:26
  • 46 - Chapter 6 Trie.mp4
    11:46
  • 47 - Chapter 6 Search.mp4
    09:23
  • 48 - Chapter 6 Insert.mp4
    09:53
  • 49 - Chapter 6 Keys matching a prefix.mp4
    08:41
  • 50 - Chapter 6 Radix tries.mp4
    10:20
  • 51 - Chapter 6 Search.mp4
    08:51
  • 52 - Chapter 6 Applications.mp4
    08:44
  • 53 - Chapter 6 String sorting.mp4
    08:58
  • 54 - Chapter 7 Use case - LRU cache.mp4
    10:44
  • 55 - Chapter 7 First attempt - Remembering values.mp4
    07:06
  • 56 - Chapter 7 Handling asynchronous calls.mp4
    05:34
  • 57 - Chapter 7 Memory is not enough (literally).mp4
    05:19
  • 58 - Chapter 7 Getting rid of stale data - LRU cache.mp4
    06:11
  • 59 - Chapter 7 Temporal ordering.mp4
    06:28
  • 60 - Chapter 7 When fresher data is more valuable - LFU.mp4
    10:25
  • 61 - Chapter 7 How to use cache is just as important.mp4
    08:56
  • 62 - Chapter 7 Solving concurrency (in Java).mp4
    10:31
  • 63 - Chapter 7 Read locks.mp4
    09:40
  • 64 - Part 2. Multidimensional queries.mp4
    03:15
  • 65 - Chapter 8 Nearest neighbors search.mp4
    07:29
  • 66 - Chapter 8 Simplifying things to get a hint.mp4
    08:25
  • 67 - Chapter 8 Moving to k-dimensional spaces.mp4
    08:23
  • 68 - Chapter 9 K-d trees - Multidimensional data indexing.mp4
    06:18
  • 69 - Chapter 9 Constructing the BST.mp4
    09:14
  • 70 - Chapter 9 Methods.mp4
    11:01
  • 71 - Chapter 9 Balanced tree.mp4
    07:24
  • 72 - Chapter 9 Remove.mp4
    12:55
  • 73 - Chapter 9 Nearest neighbor.mp4
    12:25
  • 74 - Chapter 9 Region search.mp4
    11:18
  • 75 - Chapter 10 Similarity Search Trees - Approximate nearest neighbors search for image retrieval.mp4
    08:17
  • 76 - Chapter 10 R-tree.mp4
    10:21
  • 77 - Chapter 10 Inserting points in an R-tree.mp4
    06:05
  • 78 - Chapter 10 Similarity search tree.mp4
    06:21
  • 79 - Chapter 10 SS-tree search.mp4
    06:44
  • 80 - Chapter 10 Insert.mp4
    12:09
  • 81 - Chapter 10 Insertion - Split nodes.mp4
    06:33
  • 82 - Chapter 10 Delete.mp4
    09:46
  • 83 - Chapter 10 Similarity Search.mp4
    05:29
  • 84 - Chapter 10 Approximated similarity search.mp4
    07:03
  • 85 - Chapter 10 SS+-tree.mp4
    09:21
  • 86 - Chapter 10 Reducing overlap.mp4
    06:35
  • 87 - Chapter 11 Applications of nearest neighbor search.mp4
    09:26
  • 88 - Chapter 11.Centralized application.mp4
    07:31
  • 89 - Chapter 11 Moving to a distributed application.mp4
    09:17
  • 90 - Chapter 11 Other applications.mp4
    08:19
  • 91 - Chapter 11 Multidimensional DB queries optimization.mp4
    06:02
  • 92 - Chapter 12 Clustering.mp4
    05:44
  • 93 - Chapter 12 Types of learning.mp4
    07:38
  • 94 - Chapter 12 K-means.mp4
    11:39
  • 95 - Chapter 12 The curse of dimensionality strikes again.mp4
    05:26
  • 96 - Chapter 12 Boosting k-means with k-d trees.mp4
    08:32
  • 97 - Chapter 12 DBSCAN.mp4
    05:33
  • 98 - Chapter 12 From definitions to an algorithm.mp4
    06:10
  • 99 - Chapter 12 And finally, an implementation.mp4
    07:30
  • 100 - Chapter 12 OPTICS.mp4
    11:49
  • 101 - Chapter 12 From reachability distance to clustering.mp4
    06:23
  • 102 - Chapter 12 Hierarchical clustering.mp4
    10:17
  • 103 - Chapter 12. Evaluating clustering results - Evaluation metrics.mp4
    11:09
  • 104 - Chapter 13 Parallel clustering - MapReduce and canopy clustering.mp4
    08:45
  • 105 - Chapter 13 Canopy clustering.mp4
    07:56
  • 106 - Chapter 13 MapReduce.mp4
    06:15
  • 107 - Chapter 13 First map, then reduce.mp4
    07:53
  • 108 - Chapter 13 MapReduce k-means.mp4
    07:09
  • 109 - Chapter 13 Parallelizing canopy clustering.mp4
    07:05
  • 110 - Chapter 13 MapReduce canopy clustering.mp4
    07:25
  • 111 - Chapter 13 MapReduce DBSCAN - Part 1.mp4
    08:46
  • 112 - Chapter 13 MapReduce DBSCAN - Part 2.mp4
    08:07
  • 113 - Part 3. Planar graphs and minimum crossing number.mp4
    02:21
  • 114 - Chapter 14 An introduction to graphs - Finding paths of minimum distance.mp4
    05:00
  • 115 - Chapter 14 Implementing graphs.mp4
    08:46
  • 116 - Chapter 14 Graph properties.mp4
    07:15
  • 117 - Chapter 14 Graph traversal - BFS and DFS.mp4
    10:24
  • 118 - Chapter 14 Reconstructing the path to target.mp4
    09:44
  • 119 - Chapter 14 Shortest path in weighted graphs - Dijkstra.mp4
    10:26
  • 120 - Chapter 14 Beyond Dijkstras algorithm - A.mp4
    05:06
  • 121 - Chapter 14 How good is A search.mp4
    07:56
  • 122 - Chapter 14 Heuristics as a way to balance real-time data.mp4
    05:05
  • 123 - Chapter 15 Graph embeddings and planarity - Drawing graphs with minimal edge intersections.mp4
    05:43
  • 124 - Chapter 15 Some basic definitions.mp4
    05:55
  • 125 - Chapter 15 Planar graphs.mp4
    05:21
  • 126 - Chapter 15 Planarity testing.mp4
    11:01
  • 127 - Chapter 15 Improving performance.mp4
    10:17
  • 128 - Chapter 15 Non-planar graphs.mp4
    07:43
  • 129 - Chapter 15 Rectilinear crossing number.mp4
    05:38
  • 130 - Chapter 15 Edge intersections.mp4
    06:52
  • 131 - Chapter 15 Polylines.mp4
    05:24
  • 132 - Chapter 15 Intersections between quadratic Bezier curves.mp4
    10:51
  • 133 - Chapter 16 Gradient descent - Optimization problems (not just) on graphs.mp4
    09:27
  • 134 - Chapter 16 Did you just say heuristics.mp4
    10:04
  • 135 - Chapter 16 How optimization works.mp4
    12:37
  • 136 - Chapter 16 Gradient descent.mp4
    09:16
  • 137 - Chapter 16 When is gradient descent appliable.mp4
    05:53
  • 138 - Chapter 16 Applications of gradient descent.mp4
    08:26
  • 139 - Chapter 16 Gradient descent for graph embedding.mp4
    10:31
  • 140 - Chapter 17 Simulated annealing - Optimization beyond local minima.mp4
    08:10
  • 141 - Chapter 17 Sometimes you need to climb up to get to the bottom.mp4
    05:17
  • 142 - Chapter 17 Why simulated annealing works.mp4
    06:53
  • 143 - Chapter 17 Short-range vs long-range transitions.mp4
    08:53
  • 144 - Chapter 17 Simulated annealing + traveling salesman.mp4
    05:23
  • 145 - Chapter 17 Exact vs approximated solutions.mp4
    07:20
  • 146 - Chapter 17 State transitions.mp4
    11:06
  • 147 - Chapter 17 Simulated annealing and graph embedding.mp4
    07:11
  • 148 - Chapter 17 Force-directed drawing.mp4
    10:31
  • 149 - Chapter 18 Genetic algorithms - Biologically inspired, fast-converging optimization.mp4
    06:30
  • 150 - Chapter 18 Inspired by nature.mp4
    09:56
  • 151 - Chapter 18 Chromosomes.mp4
    10:21
  • 152 - Chapter 18 Natural selection.mp4
    06:51
  • 153 - Chapter 18 Selecting individuals for mating.mp4
    13:01
  • 154 - Chapter 18 Crossover.mp4
    08:09
  • 155 - Chapter 18 The genetic algorithm template.mp4
    06:07
  • 156 - Chapter 18 TSP.mp4
    06:42
  • 157 - Chapter 18 Results and parameters tuning.mp4
    10:47
  • 158 - Chapter 18 Minimum vertex cover.mp4
    09:16
  • 159 - Chapter 18 Other applications of the genetic algorithm.mp4
    09:51
  • 160 - Chapter 18 Beyond genetic algorithms.mp4
    06:59
  • 161 - Appendix A. A quick guide to pseudo-code.mp4
    08:12
  • 162 - Appendix A Conditional instructions.mp4
    09:06
  • 163 - Appendix A Blocks and indent.mp4
    07:23
  • 164 - Appendix B. Big-O notation.mp4
    06:35
  • 165 - Appendix B Notation.mp4
    10:35
  • 166 - Appendix C. Core data structures.mp4
    10:22
  • 167 - Appendix C Tree.mp4
    08:41
  • 168 - Appendix C Hash table.mp4
    12:08
  • 169 - Appendix D. Containers as priority queues.mp4
    06:23
  • 170 - Appendix E. Recursion.mp4
    07:32
  • 171 - Appendix E Tail recursion.mp4
    05:24
  • 172 - Appendix F. Classification problems and randomnized algorithm metrics.mp4
    06:34
  • 173 - Appendix F Classification metrics.mp4
    07:06
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Packt is a publishing company founded in 2003 headquartered in Birmingham, UK, with offices in Mumbai, India. Packt primarily publishes print and electronic books and videos relating to information technology, including programming, web design, data analysis and hardware.
    • language english
    • Training sessions 173
    • duration 23:38:44
    • Release Date 2023/05/15