Companies Home Search Profile

2023 Python for Machine Learning & Data Science Projects

Focused View

14:09:49

124 View
  • 1. Introduction.html
  • 2. Arithmatic Operations in Python.mp4
    09:31
  • 3. Data Types in Python.mp4
    06:14
  • 4. Variable Casting.mp4
    05:37
  • 5. Strings Operation in Python.mp4
    09:24
  • 6. String Slicing in Python.mp4
    05:08
  • 7. String Formatting and Modification.mp4
    07:00
  • 8. Boolean Variables and Evaluation.mp4
    04:22
  • 9. List in Python.mp4
    09:31
  • 10. Tuple in Python.mp4
    06:46
  • 11. 10 Set.mp4
    07:11
  • 12. Dictionary.mp4
    07:29
  • 13. Conditional Statements - If Else.mp4
    08:46
  • 14. While Loops.mp4
    06:53
  • 15. For Loops.mp4
    08:31
  • 16. Functions.mp4
    10:39
  • 17. Working with Date and Time.mp4
    11:23
  • 18. File Handling Read and Write.mp4
    13:04
  • 1. Numpy Introduction - Create Numpy Array.mp4
    09:17
  • 2. Array Indexing and Slicing.mp4
    11:56
  • 3. Numpy Data Types.mp4
    10:43
  • 4. np.nan and np.inf.mp4
    06:32
  • 5. Statistical Operations.mp4
    04:26
  • 6. Shape(), Reshape(), Ravel(), Flatten().mp4
    04:44
  • 7. arange(), linspace(), range(), random(), zeros(), and ones().mp4
    11:44
  • 8. Where.mp4
    06:47
  • 9. Numpy Array Read and Write.mp4
    09:36
  • 10. Concatenation and Sorting.mp4
    08:14
  • 1. Pandas Series Introduction Part 1.mp4
    07:50
  • 2. Pandas Series Introduction Part 2.mp4
    05:31
  • 3. Pandas Series Read From File.mp4
    05:36
  • 4. Apply Pythons Built in Functions to Series.mp4
    08:43
  • 5. apply() for Pandas Series.mp4
    05:57
  • 6. Pandas DataFrame Creation from Scratch.mp4
    08:04
  • 7. Read Files as DataFrame.mp4
    09:51
  • 8. Columns Manipulation Part 1.mp4
    07:58
  • 9. Columns Manipulation Part 2.mp4
    07:11
  • 10. Arithmetic Operations.mp4
    04:29
  • 11. NULL Values Handling.mp4
    07:18
  • 12. DataFrame Data Filtering Part 1.mp4
    09:47
  • 13. DataFrame Data Filtering Part 2.mp4
    05:31
  • 14. 14 Handling Unique and Duplicated Values.mp4
    09:52
  • 15. Retrive Rows by Index Label.mp4
    08:05
  • 16. Replace Cell Values.mp4
    06:20
  • 17. Rename, Delete Index and Columns.mp4
    06:01
  • 18. Lambda Apply.mp4
    10:13
  • 19. Pandas Groupby.mp4
    08:07
  • 20. Groupby Multiple Columns.mp4
    08:28
  • 21. Merging, Joining, and Concatenation Part 1.mp4
    04:19
  • 22. Concatenation.mp4
    04:33
  • 23. Merge and Join.mp4
    12:00
  • 24. Working with Datetime.mp4
    10:51
  • 25. Read Stock Data from YAHOO Finance.mp4
    04:20
  • 1. Matplotlib Introduction.mp4
    03:55
  • 2. Matplotlib Line Plot Part 1.mp4
    07:19
  • 3. IMDB Movie Revenue Line Plot Part 1.mp4
    05:02
  • 4. IMDB Movie Revenue Line Plot Part 2.mp4
    03:19
  • 5. Line Plot Rank vs Runtime Votes Metascore.mp4
    05:05
  • 6. Line Styling and Putting Labels.mp4
    07:10
  • 7. Scatter, Bar, and Histogram Plot Part 1.mp4
    06:43
  • 8. Scatter, Bar, and Histogram Plot Part 2.mp4
    09:00
  • 9. Subplot Part 1.mp4
    07:01
  • 10. Subplot Part 2.mp4
    07:57
  • 11. Subplots.mp4
    06:56
  • 12. Creating a Zoomed Sub-Figure of a Figure.mp4
    07:56
  • 13. xlim and ylim, legend, grid, xticks, yticks.mp4
    06:31
  • 14. Pie Chart and Figure Save.mp4
    08:56
  • 1. Introduction.mp4
    03:22
  • 2. Scatter Plot.mp4
    05:51
  • 3. Hue, Style and Size Part1.mp4
    02:49
  • 4. Hue, Style and Size Part2.mp4
    06:01
  • 5. Line Plot Part 1.mp4
    04:32
  • 6. Line Plot Part 2.mp4
    09:34
  • 7. Line Plot Part 3.mp4
    07:48
  • 8. Subplots.mp4
    06:58
  • 9. sns.lineplot() and sns.scatterplot().mp4
    06:01
  • 10. cat plot.mp4
    06:38
  • 11. Box Plot.mp4
    03:00
  • 12. Boxen Plot.mp4
    04:16
  • 13. Violin Plot.mp4
    06:01
  • 14. Bar Plot.mp4
    03:54
  • 15. Point Plot.mp4
    02:44
  • 16. Joint Plot.mp4
    02:42
  • 17. Pair Plot.mp4
    05:02
  • 18. Regression Plot.mp4
    02:56
  • 19. Controlling Ploted Figure Aesthetics.mp4
    06:26
  • 1. IRIS Dataset Introduction.mp4
    02:36
  • 2. Load IRIS Dataset.mp4
    04:43
  • 3. Line Plot.mp4
    07:22
  • 4. Secondary Axis.mp4
    07:24
  • 5. Bar and Barh Plot.mp4
    07:55
  • 6. Stacked Bar Plot.mp4
    06:34
  • 7. Histogram.mp4
    10:31
  • 8. Box Plot.mp4
    07:30
  • 9. Area and Scatter Plot.mp4
    09:21
  • 10. Hexbin Plot.mp4
    04:40
  • 11. Pie Chart.mp4
    09:35
  • 12. Scatter Matrix and Subplots.mp4
    07:13
  • 1. Introduction to Plotly and Cufflinks.mp4
    05:08
  • 2. Plotly Line Plot.mp4
    06:34
  • 3. Scatter Plot.mp4
    04:00
  • 4. Stacked Bar Plot.mp4
    10:15
  • 5. Box and Area Plot.mp4
    04:01
  • 6. 3D Plot.mp4
    05:26
  • 7. Hist Plot, Bubble Plot and Heatmap.mp4
    08:39
  • 1. Linear Regression Introduction.mp4
    06:33
  • 2. Regression Examples.mp4
    05:28
  • 3. Types of Linear Regression.mp4
    05:31
  • 4. Assessing the performance of the model.mp4
    06:24
  • 5. Bias-Variance tradeoff.mp4
    07:51
  • 6. What is sklearn and train-test-split.mp4
    05:27
  • 7. Python Package Upgrade and Import.mp4
    05:13
  • 8. Load Boston Housing Dataset.mp4
    04:06
  • 9. Dataset Analysis.mp4
    06:46
  • 10. Exploratory Data Analysis- Pair Plot.mp4
    07:21
  • 11. Exploratory Data Analysis- Hist Plot.mp4
    05:34
  • 12. Exploratory Data Analysis- Heatmap.mp4
    04:45
  • 13. Train Test Split and Model Training.mp4
    06:44
  • 14. How to Evaluate the Regression Model Performance.mp4
    08:16
  • 15. Plot True House Price vs Predicted Price.mp4
    07:20
  • 16. Plotting Learning Curves Part 1.mp4
    08:02
  • 17. Plotting Learning Curves Part 2.mp4
    08:58
  • 18. Machine Learning Model Interpretability- Residuals Plot.mp4
    06:38
  • 19. Machine Learning Model Interpretability- Prediction Error Plot.mp4
    05:37
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 123
    • duration 14:09:49
    • Release Date 2023/03/09