Companies Home Search Profile

2023 CORE: Data Science and Machine Learning

Focused View

Dr. Isaac Faber

28:10:11

194 View
  • 1. Introduction.mp4
    01:30
  • 2. Course Overview.html
  • 3. Course Structure.mp4
    03:58
  • 4. Course Philosophy.mp4
    06:57
  • 5. First Principles - Who.mp4
    05:31
  • 6. First Principles - Why 13.mp4
    05:32
  • 7. First Principles - Why 23.mp4
    04:24
  • 8. First Principles - Why 33.mp4
    09:48
  • 9. Reading Assignment.html
  • 10. First Principles - What.mp4
    08:47
  • 11. First Principles - What Data Analyst Example Product.mp4
    02:56
  • 12. First Principles - What Data Scientist Example Product.mp4
    04:45
  • 13. First Principles - What Machine Learning Engineer Example Product.mp4
    03:19
  • 14. First Principles - What Data & Sources.mp4
    04:32
  • 15. First Principles - What Kaggle Introduction.mp4
    02:39
  • 16. First Principles - How.mp4
    06:08
  • 17. Data Science Battle Station.mp4
    02:09
  • 18. Section Wrap Up.mp4
    04:36
  • 19. Assignments.html
  • 1. Data Analyst Overview.mp4
    06:49
  • 2. Spreadsheets Overview.mp4
    02:57
  • 3. Introduction to MS Excel.mp4
    02:27
  • 4. Setting up MS Excel.html
  • 5. Overview of MS Excel.mp4
    08:50
  • 6. Excel Templates.mp4
    01:46
  • 7. Workbook Overview.mp4
    06:10
  • 8. Protecting Workbooks.mp4
    01:25
  • 9. Sharing Workbooks.mp4
    01:42
  • 10. Operators.mp4
    04:04
  • 11. Built-in Functions.mp4
    05:59
  • 1. Math - Summary Statistics.mp4
    15:33
  • 2. Calculating Summary Statistics from Scratch.mp4
    06:16
  • 3. Import a Text File.mp4
    07:48
  • 4. Data Tables.mp4
    07:17
  • 5. Summary Statistics on Tables.mp4
    09:07
  • 6. Summary Statistics Dashboard.html
  • 7. Assignment Review.mp4
    04:59
  • 8. Importing Data - Intermediate.mp4
    02:25
  • 9. Lookups and Matches.mp4
    07:04
  • 10. Calculating Churn and Customer Lifetime Value.mp4
    04:09
  • 11. Financial Forecasting (Time Series).mp4
    05:21
  • 12. Data Visualization Introduction.mp4
    04:04
  • 13. Data Visualization Excel.mp4
    06:53
  • 14. Dashboards Best Practices.mp4
    05:48
  • 15. Dashboards in Excel.mp4
    05:48
  • 16. Build a Dashboard.html
  • 17. Assignment Solution.mp4
    02:29
  • 1. Importing Data - Power Query.mp4
    08:56
  • 2. Pivot Tables.mp4
    07:26
  • 3. Mathematical Modeling - Linear Programming.mp4
    08:58
  • 4. Solver - Linear Programming in Excel.mp4
    15:18
  • 5. Analysis Toolpack.mp4
    04:27
  • 6. Visual Basic for Applications (VBA) - Introduction.mp4
    06:21
  • 7. Spreadsheet Conclusion.mp4
    03:44
  • 8. Complete LinkedIn Excel Assessment.html
  • 1. SSI - databases.mp4
    20:32
  • 2. SQL Text Editor - Sublime.mp4
    03:34
  • 3. SQL Syntax.mp4
    06:45
  • 4. Introduction to SQLite Databases.mp4
    03:18
  • 5. SQLite Install.mp4
    03:02
  • 6. SQLite Database Creation.mp4
    06:47
  • 7. Basic SQL - SELECT, FROM, WHERE statements.mp4
    11:28
  • 8. Basic SQL - BETWEEN, LIKE statements.mp4
    02:27
  • 9. Basic SQL - AND, OR, NOT, EXISTS, NULL statements.mp4
    08:20
  • 10. Basic SQL - ORDER BY, DISTINCT statements.mp4
    04:21
  • 1. Intermediate SQL - Aggregate Functions.mp4
    07:48
  • 2. Intermediate SQL - WITH and subqueries.mp4
    06:51
  • 3. Advanced SQL - Inserting, Updating, and Deleting data.mp4
    09:11
  • 4. Advanced SQL - Views.mp4
    05:39
  • 5. Connecting SQLite to Excel.mp4
    04:10
  • 6. Kaggle SQL Course.html
  • 1. Introduction to Business Intelligence (BI).mp4
    10:41
  • 2. Why Tableau.mp4
    07:52
  • 3. Installing Tableau Public.mp4
    02:08
  • 4. Tableau Overview.mp4
    09:58
  • 5. Tableau Data Types.mp4
    02:30
  • 6. Tableau Basic Viz.mp4
    09:18
  • 7. Tableau Filters.mp4
    03:45
  • 8. Connecting Tableau to OData Sources.mp4
    07:03
  • 9. Joining Data in Tableau.mp4
    08:41
  • 1. Tableau Intermediate Bar Charts.mp4
    08:34
  • 2. Tableau Dates.mp4
    03:06
  • 3. Tableau Visualizing Comparisons.mp4
    04:56
  • 4. Tableau Visualizing Distributions.mp4
    07:05
  • 5. Tableau Multiple Axis.mp4
    04:18
  • 6. Tableau Formating.mp4
    06:06
  • 7. Tableau Calculations and Parameters.mp4
    11:46
  • 8. Tableau Dashboards and Stories.mp4
    15:47
  • 9. Tableau Advanced Analysis.mp4
    07:42
  • 10. Sharing with Tableau Public.mp4
    03:41
  • 11. Tableau Desktop Pro Overview.mp4
    04:57
  • 12. Assignment Portfolio, and Resume Updates.html
  • 1. Introduction to the Data Scientist (Generalist).mp4
    07:18
  • 2. Overview of R.mp4
    07:46
  • 3. Intro to CRAN and installing base R.mp4
    04:18
  • 4. Installing RStudio.mp4
    05:31
  • 5. Overview of RStudio.mp4
    06:06
  • 6. Calculations in Base R.mp4
    06:02
  • 7. Objects in Base R.mp4
    09:20
  • 8. Functions in Base R.mp4
    14:02
  • 9. The Basics of R Scripts.mp4
    04:46
  • 10. Base R Datasets.mp4
    02:48
  • 11. Base R Help and Plots.mp4
    05:48
  • 12. Installing R Packages - More on Plots and Objects.mp4
    09:30
  • 13. Atomic Vectors.mp4
    10:38
  • 14. Object Attributes.mp4
    03:58
  • 15. Matrix and Array Objects.mp4
    03:27
  • 16. Classes.mp4
    04:03
  • 17. Factors.mp4
    03:07
  • 18. Coercion.mp4
    03:25
  • 19. Lists.mp4
    05:30
  • 20. Data Frames.mp4
    06:57
  • 21. Loading and Saving Data Part 1.mp4
    10:43
  • 22. Loading and Saving Data Part 2.mp4
    02:50
  • 23. Selecting Values from Data Frames.mp4
    11:56
  • 24. Changing Values in Data Frames.mp4
    08:31
  • 25. Sub Setting Data Frames.mp4
    08:17
  • 26. Missing Values.mp4
    05:15
  • 27. More on Selecting Values.mp4
    01:28
  • 28. Programming Flow Controls.mp4
    06:57
  • 1. An Introduction to EDA.mp4
    07:56
  • 2. EDA Example on Kaggle.mp4
    02:42
  • 3. Expanding Summary Statistics - Location.mp4
    07:55
  • 4. Location Examples in R.mp4
    02:25
  • 5. Expanding Summary Statistics - Spread.mp4
    04:24
  • 6. Spread Examples in R.mp4
    01:44
  • 7. Important EDA Tools.mp4
    04:03
  • 8. Introduction to the Tidyverse and ggplot2.mp4
    06:38
  • 9. Tidyverse website.mp4
    01:03
  • 10. ggplot - Mapping Aesthetics.mp4
    05:36
  • 11. ggplot - Facets.mp4
    04:09
  • 12. ggplot - Multiple Geom.mp4
    04:22
  • 13. ggplot - Stat Transforms.mp4
    02:57
  • 14. ggplot - Position Adjustments.mp4
    03:31
  • 15. ggplot - Coord Systems.mp4
    02:59
  • 16. ggplot - Summary.mp4
    01:28
  • 17. ggplot - Gallery Book.mp4
    01:22
  • 18. R Object Names.mp4
    03:22
  • 19. dplyr - Overview.mp4
    04:39
  • 20. dplyr - Filter.mp4
    06:48
  • 21. dplyr - Arrange and Select.mp4
    05:12
  • 22. dplyr - Mutate.mp4
    03:23
  • 23. dplyr - Pipes, group_by, and summarise.mp4
    09:19
  • 24. stringr - Basics.mp4
    11:53
  • 25. stringr - Matching.mp4
    09:09
  • 26. lubridate - Basics.mp4
    09:15
  • 27. Intro to Markdown.mp4
    10:25
  • 28. Intro to RMarkdown.mp4
    08:16
  • 29. Quick Overview of Notebooks.mp4
    03:17
  • 30. EDA Assignment.html
  • 1. Intro to Useful Statistics.mp4
    18:33
  • 2. Useful Probability 1 of 2.mp4
    15:29
  • 3. Useful Probability 2 of 2.mp4
    09:55
  • 4. Distributions Using R.mp4
    12:55
  • 5. Useful Frequentist Statistics.mp4
    07:35
  • 6. Useful Frequentists Hypothesis Testing.mp4
    12:18
  • 7. Hypothesis Testing in R.mp4
    09:40
  • 8. AB Testing.mp4
    07:57
  • 9. AB Testing in R.mp4
    03:03
  • 10. Bootstrap Introduction.mp4
    06:45
  • 11. Bootstrap in R.mp4
    04:59
  • 12. Useful Bayesian Statistics.mp4
    11:40
  • 13. Bayesian Stats in R (beta-binomial).mp4
    06:46
  • 14. Bayesian Stats in R (Thompson Sampling).mp4
    04:38
  • 15. Useful Simulations - Monte Carlo.mp4
    06:28
  • 16. Monte Carlo Simulations in R.mp4
    06:49
  • 17. Useful Regression Modeling Introduction.mp4
    13:24
  • 18. Simple Linear Regression in R.mp4
    10:33
  • 19. Useful Multiple Regression.mp4
    04:05
  • 20. Multiple Regression in R.mp4
    09:12
  • 21. Regression Issues and Concerns.mp4
    09:16
  • 22. Useful Time Series Modeling.mp4
    07:11
  • 23. Assignment Update resume and portfolio.html
  • 24. Time Series Modeling in R.mp4
    06:41
  • 1. SSI - Web Development.mp4
    11:54
  • 2. SSI - Basic Web Development Example.mp4
    08:29
  • 3. Web Development with Git in RStudio 1 of 2.mp4
    09:36
  • 4. Web Development with Git in RStudio 2 of 2.mp4
    08:09
  • 5. Reading Assignment Git.html
  • 6. Hosting with Github Pages.mp4
    06:58
  • 7. Using the blogdown R package to create websites.mp4
    15:52
  • 8. Introduction to Shiny.mp4
    03:15
  • 9. Hello World Shiny App.mp4
    04:15
  • 10. Closer Look at Shiny.mp4
    05:03
  • 11. Hosting Shiny and shinyapps.io.mp4
    06:48
  • 12. shinyapps.io and The shinydashboard Package.mp4
    04:25
  • 1. Data Scientist Section Closeout.mp4
    04:44
  • 2. Assignment Update resume and projects.html
  • 1. Job Overview.mp4
    08:35
  • 1. SSI - Intro to the Cloud.mp4
    09:46
  • 2. SSI - The AWS Cloud Console.mp4
    07:32
  • 3. SSI - The Command Line Interface.mp4
    06:48
  • 4. Command Line Demo.mp4
    07:19
  • 5. SSI - Intro to Docker.mp4
    05:46
  • 6. SSI - Docker Continued.mp4
    07:34
  • 7. SSI - Docker Demo.mp4
    03:55
  • 8. Project Jupyter Docker Stack.mp4
    05:06
  • 9. Using Docker on a Cloud Server part 1.mp4
    10:21
  • 10. Using Docker on a Cloud Server part 2.mp4
    08:47
  • 11. Other Python Development Environments.mp4
    04:01
  • 12. Project Jupyter.mp4
    06:29
  • 1. Python Overview.mp4
    04:31
  • 2. Python in Jupyterlab.mp4
    10:11
  • 3. Basic Notebook Cell Operations.mp4
    04:04
  • 4. Basic Math Operations.mp4
    05:09
  • 5. Basic Data Types.mp4
    02:38
  • 6. Basic Variables.mp4
    04:14
  • 7. Basic Built-in Functions.mp4
    04:36
  • 8. Basic Comparison Operators.mp4
    02:43
  • 9. Basic Boolean Operators.mp4
    02:07
  • 10. Combining Boolean and Comparison Operators.mp4
    01:47
  • 11. Basic Elements of Control Flow.mp4
    03:19
  • 12. Control Flow Continued.mp4
    12:58
  • 13. Importing Modules.mp4
    06:01
  • 14. Functions.mp4
    04:52
  • 15. Local vs. Global Variables.mp4
    02:43
  • 16. Lists in Depth.mp4
    05:03
  • 17. Lists in Depth Continued.mp4
    07:12
  • 18. Additive Operators.mp4
    01:40
  • 19. Methods on Lists.mp4
    05:13
  • 20. Dictionaries.mp4
    07:11
  • 21. Classes and Methods.mp4
    05:44
  • 22. Interacting with Files.mp4
    05:52
  • 1. Python for Data Science.mp4
    02:45
  • 2. Useful Matrix Operations.mp4
    10:17
  • 3. Numpy for Matrix Operations.mp4
    07:18
  • 4. Numpy Indexing and Slicing.mp4
    04:07
  • 5. Numpy Boolean Indexing.mp4
    02:08
  • 6. Numpy Reshape and Transpose.mp4
    01:35
  • 7. Numpy Pseudorandom Numbers.mp4
    02:55
  • 8. Numpy Unary and Binary Functions.mp4
    02:48
  • 9. Numpy Aggregate Functions.mp4
    03:28
  • 10. Numpy Saving and Loading Data.mp4
    01:45
  • 11. Pandas Overview.mp4
    06:03
  • 12. Pandas Read Data.mp4
    04:57
  • 13. Pandas Basic Exploration.mp4
    07:51
  • 14. Pandas at and iat.mp4
    01:35
  • 15. Pandas Reshaping Data.mp4
    06:03
  • 16. Pandas Subsetting.mp4
    05:05
  • 17. Pandas Summarize Data.mp4
    03:47
  • 18. Pandas Groupby.mp4
    04:00
  • 19. Pandas Missing Data.mp4
    10:24
  • 20. Pandas and Ploting.mp4
    01:56
  • 21. Matplotlib Documentation.mp4
    02:01
  • 22. Matplotlib Low Level.mp4
    06:17
  • 23. Matplotlib More on Subplots.mp4
    02:41
  • 24. Matplotlib Color, Linesytle, and Markers.mp4
    06:31
  • 25. Matplotlib Axis Labels.mp4
    02:52
  • 26. Matplotlib Saving Plots.mp4
    01:39
  • 27. Seaborn Documentation.mp4
    01:36
  • 28. Seaborn and Pandas.mp4
    05:06
  • 1. Python for Machine Learning.mp4
    23:52
  • 2. Machine Learning Considerations.mp4
    13:11
  • 3. Evaluating Supervised Models.mp4
    16:48
  • 4. Heuristic Modeling.mp4
    03:39
  • 5. Heuristic Modeling in Python.mp4
    12:43
  • 6. Model Training Process.mp4
    10:43
  • 7. Linear Regression.mp4
    13:28
  • 8. Linear Regression in Python.mp4
    13:50
  • 9. Logistic Regression.mp4
    10:53
  • 10. Logistic Regression in Python.mp4
    10:13
  • 11. Classification and Regression Tree (CART) Models.mp4
    09:49
  • 12. Decision Trees in Python.mp4
    04:45
  • 13. Ensemble Models.mp4
    10:00
  • 14. Random Forests and XGBoost in Python.mp4
    07:21
  • 15. Feature Engineering and Unsupervised Learning.mp4
    09:35
  • 16. Feature Engineering in Python.mp4
    11:28
  • 17. ssi - Deep Learning.mp4
    09:46
  • 18. ssi - Deep Learning Useful Applications and APIs.mp4
    08:11
  • 19. ssi - Deploying an ML Model in Production.mp4
    07:08
  • 20. ssi- Packaging and Deploying an ML Model With Docker.mp4
    17:51
  • 21. Section Closeout.mp4
    03:53
  • 22. Assignment Update resume and portfolio.html
  • Description


    A complete survey of all core skills required on the job

    What You'll Learn?


    • Learn all necessary core skills for Data Analysis, Data Science, and Machine Learning
    • Understand the first principles of data science and why it is so popular and important
    • Learn how to use, from scratch, Python, R, SQL, Tableau, and MS Excel for data science
    • Learn about a broad range of data science and machine learning libraries and resources
    • Build and host a personal resume and portfolio of data science projects using GitHub Pages
    • Learn about key supporting skills like Git/version-control, Kaggle, Databases, Command Line tools, and much more!
    • Learn how to setup development environments from scratch in R and Python
    • Learn about important related technologies like cloud, docker, and web development,
    • Learn to deploy a machine learning model using docker

    Who is this for?


  • Those who feels like they don't know where to start with data science and machine learning
  • Those tired of courses that don't show the entire picture of data science and leave them asking 'now what?'
  • Those interested in starting a journey into the data science and machine learning career field.
  • For those wanting to super-charge an existing skill set with the latest techniques and tools.
  • More details


    Description

    This is an ambitious course. The goal here is simple: Only teach what you need to know for day 1 of your first data science job. No fluff, nothing out of context, no topics that are not relevant to real world applications. We will cover EVERY core topic and tool required for those new to data science: Python, R, SQL, Useful Math/Stats/Algorithms, Tableau, and Excel in depth. The course will cover skills that align with three different job types:

    - Data Analyst

    - General Data Scientist

    - Machine Learning Engineer

    You can expect to learn from first principles the foundational topics and tools used in practice today. We will avoid topics that are not useful or are simply too advanced when starting out. Your journey will be guided by the Data Science Road Map, a collection of the best resources gathered through years of experience by the instructor.

    In addition, we will survey every important technology required on the job including GitHub, Kaggle, the basics of cloud, web development and docker. With over 200 videos, readings, and assignments, you can be sure you will be well prepared to join the data community.

    If you are just getting started or want to fill in some of your knowledge gaps this course is for you!

    Who this course is for:

    • Those who feels like they don't know where to start with data science and machine learning
    • Those tired of courses that don't show the entire picture of data science and leave them asking 'now what?'
    • Those interested in starting a journey into the data science and machine learning career field.
    • For those wanting to super-charge an existing skill set with the latest techniques and tools.

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Dr. Isaac Faber
    Dr. Isaac Faber
    Instructor's Courses
    Experienced Data Scientist with a background of developing and deploying operational data products in Industry and the Government. Worked as a lead data scientist with Army Cyber Command and is an Assistant Professor at the United States Military Academy at West Point. Strong engineering professional with a Master of Science focused in Industrial Engineering from the University of Washington and Ph.D. from Stanford's Decision and Risk Analysis program where he studied AI applied to cybersecurity.Was also named LinkedIn's 'Top Voice' for Data Analytics and has founded a venture capital backed startup.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 259
    • duration 28:10:11
    • Release Date 2023/02/06