Companies Home Search Profile

100 Days Of Code: Real World Data Science Projects Bootcamp

Focused View

Pianalytix .

70:42:33

129 View
  • 1. Course Introduction.mp4
    02:06
  • 2. Course Outline.mp4
    01:04
  • 1. Introduction To Pan Card Tempering Detector.mp4
    01:40
  • 2. Loading libraries and dataset.mp4
    03:49
  • 3. Creating the pancard detector with opencv..mp4
    12:18
  • 4. Creating the Flask App.mp4
    03:39
  • 5. Creating Important functions.mp4
    04:45
  • 6. Deploy the app in Heruko1.mp4
    05:34
  • 7. Testing the deployed pan card detector.mp4
    01:46
  • 8.1 Collab Code.zip
  • 8.2 Pan Card Tampering Flask App.zip
  • 8. Download The Project Files.html
  • 1. Introduction to dog breed prediction.mp4
    01:52
  • 2. Importing the data and libraries.mp4
    06:05
  • 3. Data Preprocessing.mp4
    03:00
  • 4. Build and Train Model.mp4
    06:57
  • 5. Testing the model.mp4
    02:18
  • 6. Creating the flask App.mp4
    06:29
  • 7. Running the app in system.mp4
    04:01
  • 8.1 Collab Code.zip
  • 8.2 Dog Breed Prediction Streamlit App.zip
  • 8. Download The Project Files.html
  • 1. Introduction Image Watermarking.mp4
    02:00
  • 2. Importing libraries and logo.mp4
    02:40
  • 3. Create text and image watermark.mp4
    08:36
  • 4. Creating the app.mp4
    13:05
  • 5. Deploying the app in heruko.mp4
    05:18
  • 6.1 Collab Code.zip
  • 6.2 Image Watermarking Flask App.zip
  • 6. Download The Project Files.html
  • 1. Introduction to traffic sign classification.mp4
    03:17
  • 2. importing the data and libraries.mp4
    05:45
  • 3. Image processing.mp4
    04:12
  • 4. creating and testing the model.mp4
    06:50
  • 5. Creating model for test set.mp4
    05:06
  • 6.1 Collab Code.zip
  • 6. Download The Project Files.html
  • 1. Introduction to text extraction.mp4
    02:09
  • 2. Importing libraries and data.mp4
    03:35
  • 3. Extracting the test from image.mp4
    04:16
  • 4. Modifiying the extractor.mp4
    07:47
  • 5. creating the extractor app.mp4
    08:10
  • 6. running the extractor app.mp4
    02:09
  • 7.1 Collab Code.zip
  • 7.2 Text Extraction Flask App.zip
  • 7. Download The Project Files.html
  • 1. Introduction.mp4
    03:49
  • 2. Importing libraries and data.mp4
    03:38
  • 3. Understanding the data and data preprocessing.mp4
    04:56
  • 4. Model building.mp4
    07:23
  • 5. Creating an app using streamlit.mp4
    11:18
  • 6.1 Collab Code.zip
  • 6.2 Plant Disease Flask App.zip
  • 6. Download The Project Files.html
  • 1. Intro Vehicle Detection.mp4
    03:01
  • 2. Importing libraries and data Vehicle Detection.mp4
    03:00
  • 3. Transforing Images and creating output Vehicle Detection.mp4
    10:43
  • 4. Creating a flask APP Vehicle Detection.mp4
    17:17
  • 5.1 Collab Code.zip
  • 5.2 Detect and Count Vehicle Flask App.zip
  • 5. Download The Project Files.html
  • 1. Intro to Face Swap.mp4
    02:29
  • 2. Importing libraries and data FACE SWAP.mp4
    04:22
  • 3. Data preprocessing and creating output FACE SWAP.mp4
    13:59
  • 4. Creating A Flask APP FACE SWAP.mp4
    14:39
  • 5.1 Collab code.zip
  • 5.2 Face Swap Flask App.zip
  • 5. Download The Project Files.html
  • 1. Introduction to Bird Species Predictio.mp4
    02:30
  • 2. Improting Libraries And Data.mp4
    06:04
  • 3. Dataprocessing Bird Species Prediction.mp4
    03:27
  • 4. Creating ML Model Bird Species Prediction.mp4
    10:06
  • 5. Creating A Flask APP.mp4
    13:17
  • 6.1 Bird Species Flask App.zip
  • 6.2 Collab Code.zip
  • 6. Download The Project Files.html
  • 1. Introduction to Intel Image Classification.mp4
    02:55
  • 2. Importing and processing data.mp4
    07:01
  • 3. Creating a Model.mp4
    08:44
  • 4. Creating a Flask App.mp4
    12:17
  • 5.1 Collab Code.zip
  • 5.2 Intel Image Flask App.zip
  • 5. Download The Project Files.html
  • 1. Introduction.mp4
    03:36
  • 2. Setting Service.mp4
    02:42
  • 3. Integrating Service.mp4
    08:22
  • 4. Coding the UI.mp4
    14:02
  • 5. Deployment on Heroku.mp4
    11:52
  • 6.1 Language Translator -Project Files.zip
  • 6. Download The Project Files.html
  • 1. Project Overview.mp4
    02:24
  • 2. Introduction.mp4
    04:29
  • 3. Setting up Watson Studio Part-1.mp4
    09:33
  • 4. Setting up Watson Studio Part-2.mp4
    07:15
  • 5. Deploying the Model on DeploymentCenter.mp4
    05:01
  • 6. Integrating Watson Service with UI.mp4
    12:00
  • 7. Deployment on Heroku Cloud..mp4
    13:25
  • 8.1 Advertisement Prediction -IBM watson-Code Files.zip
  • 8. Download The Project Files.html
  • 1. Overview.mp4
    04:10
  • 2. EDA Part-1.mp4
    04:58
  • 3. EDA Part-2.mp4
    11:53
  • 4. EDA Part-3.mp4
    09:08
  • 5. EDA Part-4.mp4
    11:11
  • 6. EDA Part-5.mp4
    12:48
  • 7. EDA Part-6.mp4
    17:06
  • 8. EDA Part-7.mp4
    14:35
  • 9. Model Building Part-1.mp4
    20:24
  • 10. Model Building Part-2.mp4
    13:56
  • 11. Model Building Part-3.mp4
    15:16
  • 12. Model Building Part-4.mp4
    09:52
  • 13. Model Building Part-5..mp4
    02:10
  • 14. Integrating with UI.mp4
    15:23
  • 15. Deployement on Heroku.mp4
    09:36
  • 16.1 laptop price predictor -Code Files.zip
  • 16. Download The Project Files.html
  • 1. Introduction.mp4
    06:25
  • 2. Fetching Data from Whatsapp.mp4
    02:38
  • 3. Project Structure.mp4
    07:36
  • 4. Text Processing Part 1.mp4
    11:08
  • 5. Text Processing Part2.mp4
    14:36
  • 6. Text Processing Part 3.mp4
    05:54
  • 7. Text Processing Part4.mp4
    14:11
  • 8. Text Analytics Part 1.mp4
    12:36
  • 9. Model Building Part-1.mp4
    20:24
  • 10. Text Analytics Part 3.mp4
    12:36
  • 11. Text Analytics Part 3.mp4
    12:12
  • 12. Text Analytics Part5.mp4
    11:43
  • 13. Text Analytics Part6.mp4
    07:56
  • 14. Deployment on Heroku Cloud.mp4
    10:37
  • 15.1 Whatsapp text analyzer -Code Files.zip
  • 15. Download The Project Files.html
  • 1. Introduction.mp4
    03:39
  • 2. Coding Recommendation System.mp4
    12:42
  • 3. Integrating with Flask Server.mp4
    14:49
  • 4. Exploratory Data Analysis.mp4
    07:38
  • 5. Integrating Python Code with JavaScript.mp4
    09:27
  • 6. Deployment on Heroku Cloud.mp4
    07:50
  • 7.1 Course recommendation system -Code Files.zip
  • 7. Download The Project Files.html
  • 1. Introduction.mp4
    04:55
  • 2. EDA Part 1.mp4
    12:30
  • 3. EDA Part 2.mp4
    07:04
  • 4. EDA Part 3.mp4
    12:29
  • 5. EDA Part 4.mp4
    09:30
  • 6. Model Building.mp4
    14:42
  • 7. Coding the UI.mp4
    10:13
  • 8. Deployment on HerokuCloud.mp4
    14:24
  • 9.1 IPL match predictor- Code Files.zip
  • 9. Download The Project Files.html
  • 1. Introduction.mp4
    03:48
  • 2. EDA Part 1.mp4
    08:55
  • 3. EDA Part 2.mp4
    11:09
  • 4. Feature Selection Part 1.mp4
    11:25
  • 5. Feature Selection Part 2.mp4
    05:28
  • 6. Model Building.mp4
    06:13
  • 7. Model Evaluation.mp4
    05:48
  • 8. Coding the UI Part 1..mp4
    10:09
  • 9. Coding the UI Part 2.mp4
    11:07
  • 10. Model Deployment on Azure Part 1.mp4
    12:43
  • 11. Model Deployment on Azure Part 2..mp4
    02:47
  • 12.1 Body fat estimator -Code Files.zip
  • 12. Download The Project Files.html
  • 1. Introduction.mp4
    04:33
  • 2. Data Preprocessing..mp4
    09:30
  • 3. EDA Part 1.mp4
    10:26
  • 4. EDA Part 2..mp4
    07:56
  • 5. Feature Selection.mp4
    13:57
  • 6. Model Building..mp4
    05:08
  • 7. HyperParameter Tuning,Model Testing.mp4
    14:55
  • 8. Coding the UI Part 1.mp4
    06:22
  • 9. Coding the UI Part 2.mp4
    09:21
  • 10. Coding the UI Part 3.mp4
    12:40
  • 11. Deployment Part 1.mp4
    14:21
  • 12. Deployment Part 2.mp4
    01:59
  • 13.1 Campus placement predictor -Code Files.zip
  • 13. Download The Project Files.html
  • 1. Introduction.mp4
    04:54
  • 2. Data Preprocessing.mp4
    11:44
  • 3. Model Building.mp4
    08:31
  • 4. Coding the UI.mp4
    13:30
  • 5. Integrating Jinja Framework.mp4
    11:52
  • 6. Integrating JavaScript with Flask.mp4
    07:17
  • 7. Deployment on GCP.mp4
    16:46
  • 8.1 Car acceptability prediction -Code Files.zip
  • 8. Download The Project Files.html
  • 1. Introduction.mp4
    03:35
  • 2. Text Processing Part1.mp4
    10:19
  • 3. Text Processing Part2.mp4
    10:29
  • 4. Model Building..mp4
    10:24
  • 5. Model Testing.mp4
    06:01
  • 6. Integrating Model with Flask.mp4
    11:11
  • 7. Touch points on AWS.mp4
    12:13
  • 8. Deploying model on AWS EC2 instance.mp4
    28:37
  • 9. Fixing the Errors.mp4
    03:07
  • 10.1 Book genre classification -Code Files.zip
  • 10. Download The Project Files.html
  • 1. Introduction to project.mp4
    05:00
  • 2. Understanding the libraries and dataset.mp4
    11:58
  • 3. Preprocessing the data.mp4
    21:12
  • 4. Building and training the model.mp4
    11:02
  • 5. Understanding MLPClassifier model.mp4
    16:06
  • 6. Understanding the Django framework.mp4
    16:55
  • 7. Running our Django application.mp4
    13:39
  • 8. Hosting on AWS.mp4
    21:56
  • 9. Hosting on AWS.mp4
    12:04
  • 10. Hosting on AWS.mp4
    12:47
  • 11.1 E.coli Code files.zip
  • 11. Download The Project Files.html
  • 1. Introduction.mp4
    04:03
  • 2. Understanding about libraries and preprocessing dataset.mp4
    11:43
  • 3. Text tokenization and vectorization.mp4
    17:02
  • 4. Building and training the model.mp4
    11:57
  • 5. Django framework.mp4
    10:50
  • 6. Setting up the website and unsderstanding the flow.mp4
    18:04
  • 7. Understanding the AWS cloud system.mp4
    19:20
  • 8. Setting up the server and hosting the website.mp4
    20:40
  • 9.1 Predict Next Word code files.zip
  • 9. Download The Project Files.html
  • 1. Introduction.mp4
    05:23
  • 2. Understanding the libraries and dataset.mp4
    12:36
  • 3. Building and training the model.mp4
    13:20
  • 4. understanding the Django Framework.mp4
    16:01
  • 5. Working witht the django framework to build the website.mp4
    15:29
  • 6. Instantiating the instance with ec2.mp4
    15:05
  • 7. Setting and running the server.mp4
    26:36
  • 8.1 Predicting Sequence Code.zip
  • 8. Download The Project Files.html
  • 1. Introduction.mp4
    06:53
  • 2. Introduction to libraries and data preprocessing.mp4
    14:54
  • 3. Developing the TF-IDF model.mp4
    18:47
  • 4. Understanding the django framework.mp4
    15:20
  • 5. Finalizing the website.mp4
    14:07
  • 6. Setting up the Azure VM.mp4
    21:03
  • 7. Setting and running the server.mp4
    20:12
  • 8.1 Keyword Extraction code &data.zip
  • 8. Download The Project Files.html
  • 1. Introduction.mp4
    05:31
  • 2. Brief of libraries and preprocessing done.mp4
    18:54
  • 3. Developing the NLP model.mp4
    15:43
  • 4. Setting up the django application.mp4
    14:33
  • 5. Working on the django website.mp4
    13:31
  • 6. Creating the VM instance on Azure.mp4
    21:30
  • 7. Setting up the VM for hosting.mp4
    14:58
  • 8.1 Correct spelling preiction code & data.zip
  • 8. Download The Project Files.html
  • 1. Introduction.mp4
    03:53
  • 2. Creating dataset through spotify API.mp4
    15:51
  • 3. Understanding the libraries and preprocessing the data.mp4
    10:46
  • 4. Developing the model_Trim.mp4
    15:29
  • 5. Setting up the django project.mp4
    13:40
  • 6. running our django application.mp4
    14:07
  • 7. Setting up the VM.mp4
    10:04
  • 8. Setting up the VM part-2.mp4
    16:46
  • 9. setting the code in VM.mp4
    18:26
  • 10.1 Music popularity Code & data.zip
  • 10. Download The Project Files.html
  • 1. Introduction.mp4
    04:45
  • 2. Understanding the libraries and the dataset.mp4
    17:47
  • 3. Understanding TF-IDF.mp4
    12:12
  • 4. Developing the LSTM model.mp4
    11:19
  • 5. Configuring the django porject.mp4
    16:39
  • 6. Running the django application.mp4
    13:06
  • 7. Setting up the VM part-1.mp4
    14:09
  • 8. Setting up the VM part-2.mp4
    11:25
  • 9. Running the VM.mp4
    14:41
  • 10.1 Video ADs Code & data.zip
  • 10. Download The Project Files.html
  • 1. Introduction.mp4
    04:23
  • 2. Creating and preprocessing the dataset.mp4
    19:38
  • 3. Building the baseline and CNN model.mp4
    11:17
  • 4. Setting up the django application.mp4
    15:47
  • 5. updating the website.mp4
    15:51
  • 6. Instantiating the VM.mp4
    16:51
  • 7. setting the code inside the VM.mp4
    14:44
  • 8.1 Image Digits Code & data.zip
  • 8. Download The Project Files.html
  • 1. Introduction.mp4
    03:14
  • 2. Understanding the libraries and model.mp4
    12:29
  • 3. Building and training the model.mp4
    12:57
  • 4. Setting up the django project.mp4
    16:15
  • 5. Running the django application.mp4
    15:09
  • 6. Setting up the VM.mp4
    17:33
  • 7. Running our code in the VM.mp4
    17:25
  • 8.1 Emotion Code.zip
  • 8.3 emotion-dataset 160mb.zip
  • 8. Download The Project Files.html
  • 1. Introduction.mp4
    05:21
  • 2. Understanding the libraries and dataset.mp4
    15:48
  • 3. Developing the model.mp4
    15:32
  • 4. Setting up the django application.mp4
    14:26
  • 5. Running the django application.mp4
    12:45
  • 6. Setting up the VM.mp4
    18:59
  • 7. Running the VM.mp4
    13:41
  • 8.1 Breast Cancer Dataset Small -partial-.zip
  • 8. Download The Project Files.html
  • 9.1 Breast cancer detection Code.zip
  • 9. Download The Project Files 2.html
  • 1. Introduction to Sentiment Analysis Logistic Regression.mp4
    02:08
  • 2. Project Notebook Google Colab.mp4
    18:31
  • 3. Building Django App.mp4
    10:55
  • 4. Deploying APP in heruko.mp4
    12:36
  • 5.1 1-Sentiment Analysis Code.zip
  • 5. Download The Project Files.html
  • 1. Introduction -Attrition Rate Django.mp4
    02:27
  • 2. Creating Colab Notebook.mp4
    27:31
  • 3. Creating Django App.mp4
    10:59
  • 4. Deploying APP in heruko.mp4
    09:52
  • 5.1 2-Attrition Rate Django code.zip
  • 5. Download The Project Files.html
  • 1. Introduction -Working with Pokemon Dataset.mp4
    02:34
  • 2. Creating Colab Notebook.mp4
    20:00
  • 3. Creating DJango APP.mp4
    12:34
  • 4. Deploying APP in heruko.mp4
    09:02
  • 5.1 Pokemon APP Code.zip
  • 5. Download The Project Files.html
  • 1. Introduction to face app intro.mp4
    02:44
  • 2. Creating The Face App Using OpenCV.mp4
    14:53
  • 3. Creating The face app opencv.mp4
    10:15
  • 4. Creating The face app opencv.mp4
    13:13
  • 5.1 Face Detection App- Code.zip
  • 5. Download The Project Files.html
  • 1. Introduction To Cats Vs Dogs Classification.mp4
    03:05
  • 2. Creating Project Notebook.mp4
    25:55
  • 3. Building Model -Colab.mp4
    08:45
  • 4. Building Flask App.mp4
    07:00
  • 5. Building Flask App Deployement.mp4
    09:54
  • 6.1 Cats Vs Dogs App Code.zip
  • 6. Download The Project Files.html
  • 1. Introduction To Customer Revenue Prediction.mp4
    02:55
  • 2. Colab Notebook Customer Revenue Prediction.mp4
    22:58
  • 3. Creating Flask App.mp4
    14:23
  • 4. Deploying Flask App.mp4
    09:16
  • 5.1 Customer Revenue Prediction Code.zip
  • 5. Download The Project Files.html
  • 1. Introduction- Gender From Voice Prediction.mp4
    02:19
  • 2. Creating Project Notebook.mp4
    25:22
  • 3. Creating Project App Django.mp4
    12:46
  • 4. Deploying The App.mp4
    08:40
  • 5.1 Voice Gender Prediction code.zip
  • 5. Download The Project Files.html
  • 1. Intro To - Restaurant Recommendation System..mp4
    04:21
  • 2. Creating Colab Notebook.mp4
    14:05
  • 3. Exploratory Data Analysis-.mp4
    10:38
  • 4. Data Analysis2.mp4
    31:57
  • 5.1 Restaurant Rec - Code.zip
  • 5. Download The Project Files.html
  • 1. Introduction to Happiness Ranking.mp4
    03:27
  • 2. Project Notebook.mp4
    28:38
  • 3. Creating Django App.mp4
    17:36
  • 4. Deploying Django App.mp4
    08:50
  • 5.1 Happiness Ranking - Code.zip
  • 5. Download The Project Files.html
  • 1. Introduction To Forest Fire.mp4
    04:26
  • 2. Project Notebook.mp4
    25:53
  • 3. Project Notebook Part2-.mp4
    08:21
  • 4. Creating Django APP.mp4
    15:16
  • 5. Deploying Django App.mp4
    09:14
  • 6.1 Forest Fires App -Code.zip
  • 6. Download The Project Files.html
  • 1. Introduction.mp4
    02:40
  • 2. Machine Learning model building part1.mp4
    07:20
  • 3. Machine Learning model building part2.mp4
    11:53
  • 4. Machine Learning model building part3.mp4
    13:40
  • 5. Creating Django Application part1.mp4
    12:18
  • 6. Creating Django Application part2.mp4
    08:21
  • 7. Deploying on Heroku NW.mp4
    08:36
  • 8.1 Car selling price prediction -Code.zip
  • 8. Download The Project Files.html
  • 1. Introduction.mp4
    03:07
  • 2. Intoductory Machine Learning model building.mp4
    12:27
  • 3. Feature Building and Selection.mp4
    14:16
  • 4. Model Building.mp4
    05:40
  • 5. Django Application Introduction.mp4
    07:07
  • 6. 6Django Application building.mp4
    15:13
  • 7. Deploying on Heroku.mp4
    06:35
  • 8.1 Affair prediction- Code.zip
  • 8. Download The Project Files.html
  • 1. Introduction.mp4
    02:57
  • 2. Importing libraries and Understanding data.mp4
    16:48
  • 3. Building the model.mp4
    09:57
  • 4. Building Django Application.mp4
    15:51
  • 5. Delpoying on Heroku.mp4
    07:59
  • 6.1 Mushroom Classification App Code.zip
  • 6. Download The Project Files.html
  • 1. Introduction.mp4
    02:46
  • 2. Introduction to libraries and dataset.mp4
    14:56
  • 3. Preprocessing the data.mp4
    10:01
  • 4. building the model.mp4
    07:13
  • 5. Django Application.mp4
    14:57
  • 6. Deploying to Heroku.mp4
    07:17
  • 7.1 Google App rating preiction Code.zip
  • 7. Download The Project Files.html
  • 1. Introduction.mp4
    03:07
  • 2. Importing Libraries and understanding data.mp4
    15:21
  • 3. Building and training the model.mp4
    13:08
  • 4. Django Apllication.mp4
    14:01
  • 5. Deploying on heroku.mp4
    07:21
  • 6.1 Bank cards Code.zip
  • 6. Download The Project Files.html
  • 1. Introduction.mp4
    03:28
  • 2. Understanding the data.mp4
    13:34
  • 3. Outliers and Model.mp4
    17:15
  • 4. Building Django Application.mp4
    15:24
  • 5. Deploying to Heroku.mp4
    07:55
  • 6.1 Artist Sculpture Code.zip
  • 6. Download The Project Files.html
  • 1. Introduction.mp4
    02:34
  • 2. Introduction and handling the data.mp4
    17:03
  • 3. Building the model.mp4
    06:17
  • 4. Django Application.mp4
    13:25
  • 5. Heroku Deployment.mp4
    06:36
  • 6.1 Medical Code.zip
  • 6. Download The Project Files.html
  • 1. Introduction.mp4
    03:00
  • 2. Understanding the data.mp4
    14:00
  • 3. Feature Selection and model building.mp4
    09:18
  • 4. Django Application.mp4
    15:25
  • 5. Deploying on Heroku.mp4
    07:59
  • 6.1 Phishing code.zip
  • 6. Download The Project Files.html
  • 1. Introduction.mp4
    03:46
  • 2. Understanding the data.mp4
    10:17
  • 3. Cleaning the data..mp4
    15:05
  • 4. Building the model.mp4
    10:09
  • 5. Implementing Django Application.mp4
    13:30
  • 6. Deploying to heroku.mp4
    07:39
  • 7.1 Clothing Code.zip
  • 7. Download The Project Files.html
  • 1. Introduction.mp4
    05:40
  • 2. Cleaning the data.mp4
    12:29
  • 3. Building the model..mp4
    17:17
  • 4. Implementing Django web application.mp4
    16:25
  • 5. 5Deploying to Heroku.mp4
    09:04
  • 6.1 Similarity in Texts Code.zip
  • 6. Download The Project Files.html
  • 1. Importing libraries and data - BlackFridayVideo.mp4
    04:21
  • 2. Understanding data.mp4
    03:54
  • 3. Data visulaization and data preprocessing-.mp4
    12:04
  • 4. Model building part1.mp4
    05:40
  • 5. Model building part2.mp4
    06:18
  • 6.1 Notebook Black friday .zip
  • 6. Download The Project Files.html
  • 1. Importing libraries and data.mp4
    07:30
  • 2. Text normalization.mp4
    07:04
  • 3. Lemmatization.mp4
    04:21
  • 4. Data preprocessing.mp4
    10:43
  • 5. Model Building.mp4
    10:22
  • 6.1 Sentiment analysis files.zip
  • 6. Download The Project Files.html
  • 1. Importing libraries and data Parkinson Syndrome prediction.mp4
    04:27
  • 2. Understanding the data.mp4
    08:07
  • 3. data visualization.mp4
    07:28
  • 4. Model building part 1.mp4
    09:08
  • 5. Model building part 2-.mp4
    11:40
  • 6.1 Parkinson Disease files.zip
  • 6. Download The Project Files.html
  • 1. Importing libraries and data.mp4
    03:40
  • 2. data preprocessing.mp4
    03:36
  • 3. Text cleaning.mp4
    07:07
  • 4. Vectorizer.mp4
    02:11
  • 5. Model Building.mp4
    13:34
  • 6.1 Fake news classifier files.zip
  • 6. Download The Project Files.html
  • 1. Importing libraries and data.mp4
    07:00
  • 2. Understanding data.mp4
    04:40
  • 3. data visualization and preprocessing.mp4
    09:21
  • 4. Balancing the target column.mp4
    06:48
  • 5. Model building.mp4
    10:42
  • 6. Model evaluation.mp4
    06:27
  • 7.1 Toxic Comment Classifier files.zip
  • 7. Download The Project Files.html
  • 1. Importing libraries and data.mp4
    12:35
  • 2. Understanding data.mp4
    10:54
  • 3. data visualization.mp4
    08:00
  • 4. data preprocessing.mp4
    07:49
  • 5. Model building.mp4
    12:49
  • 6.1 IMDB files.zip
  • 6. Download The Project Files.html
  • 1. Importing-libraries-and-data.mp4
    07:46
  • 2. Understanding-data.mp4
    07:40
  • 3. data-visualization.mp4
    07:46
  • 4. data-preprocessing.mp4
    07:46
  • 5. Feature-Engineering.mp4
    11:16
  • 6. Model-building-part1.mp4
    11:50
  • 7. Model-building-part2.mp4
    05:18
  • 8.1 Indian Air Quality Files.zip
  • 8. Download The Project Files.html
  • 1. Importing-libraries-and-data.mp4
    06:52
  • 2. data-preprocessing-Covid-19-.mp4
    09:50
  • 3. Data-Analysis-part1-Covid-19.mp4
    11:22
  • 4. Data-Analysis-part2-Covid-19.mp4
    12:36
  • 5.1 Covid-19 Analysis Files.zip
  • 5. Download The Project Files.html
  • 1. Importing-libraries-and-data.mp4
    13:41
  • 2. Understanding-data-Customer.mp4
    06:13
  • 3. data-visualization-Customer.mp4
    16:38
  • 4. Model-building-Customer-Churn.mp4
    13:18
  • 5. -Hypertuning-Customer-Churning.mp4
    08:28
  • 6.1 Customer churn files.zip
  • 6. Download The Project Files.html
  • 1. -Importing-libraries-and-dat.mp4
    04:14
  • 2. Understanding-data-Chatbot.mp4
    06:40
  • 3. data-visualization-Chatbot.mp4
    07:12
  • 4. text-normalization-Chatbot.mp4
    10:34
  • 5. Creating-a-application-Chatbot.mp4
    07:59
  • 6.1 Chatbot files.zip
  • 6. Download The Project Files.html
  • 1. Intro To Video Games sales.mp4
    03:56
  • 2. colab part 1.mp4
    26:21
  • 3. colab part 2.mp4
    05:56
  • 4. Django App - Video Games.mp4
    18:09
  • 5. Heruko App Deployment - Video Games.mp4
    09:25
  • 6.1 Video games sales - Code.zip
  • 6. Download The Project Files.html
  • 1. Zomato Restaurant Analysis.mp4
    37:58
  • 2.1 Zomato+Restaurant+Analysis.zip
  • 2. Download The Project Files.html
  • 1. Walmart Sales Forecasting.mp4
    59:13
  • 2.1 Walmart+Sales+Forecasting.zip
  • 2. Download The Project Files.html
  • 1. Introduction to the project.mp4
    06:15
  • 2. Importing Libraries and DataSet.mp4
    05:46
  • 3. Data Analysis and Prepration.mp4
    08:19
  • 4. Building ML Model.mp4
    07:03
  • 5. Evaluating ML Model.mp4
    05:36
  • 6. Performing Wavelet Transformation.mp4
    11:34
  • 7. Building and Evaluation of model with transformed data.mp4
    06:56
  • 8.1 Sonic log Code and Files.zip
  • 8. Download The Project Files.html
  • 1. Introduction to the project.mp4
    07:26
  • 2. Importing Libraries and Dataset.mp4
    05:39
  • 3. Data Analysis.mp4
    08:24
  • 4. Data Preprocessing..mp4
    07:45
  • 5. Building ML Models.mp4
    11:51
  • 6. Hypertuning the models and results..mp4
    09:08
  • 7.1 Pore pressure Code and Files.zip
  • 7. Download The Project Files.html
  • 1. Introduction to the Project.mp4
    05:27
  • 2. Importing and reading Audio file.mp4
    09:50
  • 3. Extracting Time-Domain features-1.mp4
    09:58
  • 4. Extracting Time-Domain features-2.mp4
    07:14
  • 5. Fourier Transform and it_s applications-1.mp4
    10:40
  • 6. Fourier Transform and Frequency Domain features.mp4
    06:45
  • 7.1 Audio Processing Code and Files.zip
  • 7. Download The Project Files.html
  • 1. Introduction to the Project.mp4
    03:57
  • 2. Importing Libraries and Audio Files..mp4
    04:45
  • 3. Performing Speech Recognition.mp4
    09:17
  • 4. Performing Text Analysis.mp4
    07:53
  • 5.1 Test using speech Code and Files.zip
  • 5. Download The Project Files.html
  • 1. Introduction to the project.mp4
    04:32
  • 2. Importing Libraries and Audio Files.mp4
    05:53
  • 3. Extracting audio features 1..mp4
    08:02
  • 4. Extracting audio features 2.mp4
    05:19
  • 5. Model Development 1.mp4
    04:27
  • 6. Model Development 2.mp4
    05:06
  • 7.1 Audio Classify Code and Files.zip
  • 7. Download The Project Files.html
  • Description


    Build 100 Projects in 100 Days- Data Science, Machine Learning, Deep Learning (Python, Flask, Django, AWS, Heruko Cloud)

    What You'll Learn?


    • Have a great intuition of many Machine Learning models
    • Know which Machine Learning model to choose for each type of problem
    • Implement Machine Learning Algorithms
    • Create supervised machine learning algorithms to predict classes.
    • Understand the full product workflow for the machine learning lifecycle.
    • Explore how to deploy your machine learning models.
    • Learn which Machine Learning model to choose for each type of problem
    • Real life case studies and projects to understand how things are done in the real world
    • Learn to use NumPy for Numerical Data
    • Use Matplotlib to create fully customized data visualizations with Python.
    • Explore large datasets and wrangle data using Pandas
    • Learn to use Seaborn for statistical plots

    Who is this for?


  • Beginners in data science
  • More details


    Description

    In This Course, Solve Business Problems Using Data Science Practically. Learn To Build & Deploy Machine Learning, Data Science, Artificial Intelligence, Auto Ml, Deep Learning, Natural Language Processing (Nlp) Web Applications Projects With Python (Flask, Django, Heroku, AWS, Azure, GCP, IBM Watson, Streamlit Cloud).


    We have been able to process such a voluminous amount of data. We are able to analyze and draw insights from this data owing to these advanced computational systems.

    However, despite all these advancements, data remains a vast ocean that is growing every second. While the huge abundance of data can prove useful for the industries, the problem lies in the ability to use this data.

    As mentioned above, data is fuel but it is a raw fuel that needs to be converted into useful fuel for the industries. In order to make this raw fuel useful, industries require Data Scientists. Therefore, knowledge of data science is a must if you wish to use this data to help companies make powerful decisions.

    According to Glassdoor, the average salary for a Data Scientist is $117,345/yr. This is above the national average of $44,564. Therefore, a Data Scientist makes 163% more than the national average salary.

    This makes Data Science a highly lucrative career choice. It is mainly due to the dearth in Data Scientists resulting in a huge income bubble.

    Since Data Science requires a person to be proficient and knowledgeable in several fields like Statistics, Mathematics and Computer Science, the learning curve is quite steep. Therefore, the value of a Data Scientist is very high in the market.

    A Data Scientist enjoys the position of prestige in the company. The company relies on his expertise to make data-driven decisions and enable them to navigate in the right direction.

    Furthermore, the role of a Data Scientist depends on the specialization of his employer company. For example – A commercial industry will require a data scientist to analyze their sales.

    A health-care company will require data scientists to help them analyze genomic sequences. The salary of a Data Scientist depends on his role and type of work he has to perform. It also depends on the size of the company which is based on the amount of data they utilize.

    Still, the pay scale of Data Scientist is way above other IT and management sectors. However, the salary observed by Data Scientists is proportional to the amount of work that they must put in. Data Science needs hard work and requires a person to be thorough with his/her skills.


    In This Course, We Are Going To Work On 100 Real World Projects Listed Below:


    Project-1: Pan Card Tempering Detector App -Deploy On Heroku

    Project-2: Dog breed prediction Flask App

    Project-3: Image Watermarking App -Deploy On Heroku

    Project-4: Traffic sign classification

    Project-5: Text Extraction From Images Application

    Project-6: Plant Disease Prediction Streamlit App

    Project-7: Vehicle Detection And Counting Flask App

    Project-8: Create A Face Swapping Flask App

    Project-9: Bird Species Prediction Flask App

    Project-10: Intel Image Classification Flask App


    Project-11: Language Translator App Using IBM Cloud Service -Deploy On Heroku

    Project-12: Predict Views On Advertisement Using IBM Watson -Deploy On Heroku

    Project-13: Laptop Price Predictor -Deploy On Heroku

    Project-14: WhatsApp Text Analyzer -Deploy On Heroku

    Project-15: Course Recommendation System -Deploy On Heroku

    Project-16: IPL Match Win Predictor -Deploy On Heroku

    Project-17: Body Fat Estimator App -Deploy On Microsoft Azure

    Project-18: Campus Placement Predictor App -Deploy On Microsoft Azure

    Project-19: Car Acceptability Predictor -Deploy On Google Cloud

    Project-20: Book Genre Classification App -Deploy On Amazon Web Services


    Project 21 : DNA classification for finding E.Coli - Deploy On AWS

    Project 22 : Predict the next word in a sentence. - AWS - Deploy On AWS

    Project 23 : Predict Next Sequence of numbers using LSTM - Deploy On AWS

    Project 24 : Keyword Extraction from text using NLP - Deploy On Azure

    Project 25 : Correcting wrong spellings - Deploy On Azure

    Project 26 : Music popularity classification - Deploy On Google App Engine

    Project 27 : Advertisement Classification - Deploy On Google App Engine

    Project 28 : Image Digit Classification - Deploy On AWS

    Project 29 : Emotion Recognition using Neural Network - Deploy On AWS

    Project 30 : Breast cancer Classification - Deploy On AWS


    Project-31: Sentiment Analysis Django App -Deploy On Heroku

    Project-32: Attrition Rate Django Application

    Project-33: Find Legendary Pokemon Django App -Deploy On Heroku

    Project-34: Face Detection Streamlit App

    Project-35: Cats Vs Dogs Classification Flask App

    Project-36: Customer Revenue Prediction App -Deploy On Heroku

    Project-37: Gender From Voice Prediction App -Deploy On Heroku

    Project-38: Restaurant Recommendation System

    Project-39: Happiness Ranking Django App -Deploy On Heroku

    Project-40: Forest Fire Prediction Django App -Deploy On Heroku


    Project-41: Build Car Prices Prediction App -Deploy On Heroku

    Project-42: Build Affair Count Django App -Deploy On Heroku

    Project-43: Build Shrooming Predictions App -Deploy On Heroku

    Project-44: Google Play App Rating prediction With Deployment On Heroku

    Project-45: Build Bank Customers Predictions Django App -Deploy On Heroku

    Project-46: Build Artist Sculpture Cost Prediction Django App -Deploy On Heroku

    Project-47: Build Medical Cost Predictions Django App -Deploy On Heroku

    Project-48: Phishing Webpages Classification Django App -Deploy On Heroku

    Project-49: Clothing Fit-Size predictions Django App -Deploy On Heroku

    Project-50: Build Similarity In-Text Django App -Deploy On Heroku


    Project-51: Black Friday Sale Project

    Project-52: Sentiment Analysis Project

    Project-53: Parkinson’s Disease Prediction Project

    Project-54: Fake News Classifier Project

    Project-55: Toxic Comment Classifier Project

    Project-56: IMDB Movie Ratings Prediction

    Project-57: Indian Air Quality Prediction

    Project-58: Covid-19 Case Analysis

    Project-59: Customer Churning Prediction

    Project-60: Create A ChatBot


    Project-61: Video Game sales Analysis

    Project-62: Zomato Restaurant Analysis

    Project-63: Walmart Sales Forecasting

    Project-64 : Sonic wave velocity prediction using Signal Processing Techniques

    Project-65 : Estimation of Pore Pressure using Machine Learning

    Project-66 : Audio processing using ML

    Project-67 : Text characterisation using Speech recognition

    Project-68 : Audio classification using Neural networks

    Project-69 : Developing a voice assistant

    Project-70 : Customer segmentation


    Project-71 : FIFA 2019 Analysis

    Project-72 : Sentiment analysis of web scrapped data

    Project-73 : Determining Red Vine Quality

    Project-74 : Customer Personality Analysis

    Project-75 : Literacy Analysis in India

    Project-76: Heart Attack Risk Prediction Using Eval ML (Auto ML)

    Project-77: Credit Card Fraud Detection Using Pycaret (Auto ML)

    Project-78: Flight Fare Prediction Using Auto SK Learn (Auto ML)

    Project-79: Petrol Price Forecasting Using Auto Keras

    Project-80: Bank Customer Churn Prediction Using H2O Auto ML


    Project-81: Air Quality Index Predictor Using TPOT With End-To-End Deployment (Auto ML)

    Project-82: Rain Prediction Using ML models & PyCaret With Deployment (Auto ML)

    Project-83: Pizza Price Prediction Using ML And EVALML(Auto ML)

    Project-84: IPL Cricket Score Prediction Using TPOT (Auto ML)

    Project-85: Predicting Bike Rentals Count Using ML And H2O Auto ML

    Project-86: Concrete Compressive Strength Prediction Using Auto Keras (Auto ML)

    Project-87: Bangalore House Price Prediction Using Auto SK Learn (Auto ML)

    Project-88: Hospital Mortality Prediction Using PyCaret (Auto ML)

    Project-89: Employee Evaluation For Promotion Using ML And Eval Auto ML

    Project-90: Drinking Water Potability Prediction Using ML And H2O Auto ML


    Project-91: Image Editor Application With OpenCV And Tkinter

    Project-92: Brand Identification Game With Tkinter And Sqlite3

    Project-93: Transaction Application With Tkinter And Sqlite3

    Project-94: Learning Management System With Django

    Project-95: Create A News Portal With Django

    Project-96: Create A Student Portal With Django

    Project-97: Productivity Tracker With Django And Plotly

    Project-98: Create A Study Group With Django

    Project-99: Building Crop Guide Application with PyQt5, SQLite

    Project-100: Building Password Manager Application With PyQt5, SQLite


    Tip: Create A 50 Days Study Plan Or 100 Day Study Plan, Spend 1-3hrs Per Day, Build 100 Projects In 50 Days Or  100 Projects In 100 Days.


    The Only Course You Need To Become A Data Scientist, Get Hired And Start A New Career


    Note (Read This): This Course Is Worth Of Your Time And Money, Enroll Now Before Offer Expires.

    Who this course is for:

    • Beginners in data science

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Pianalytix .
    Pianalytix .
    Instructor's Courses
    Pianalytix Edutech Pvt Ltd uses cutting-edge AI technology & innovative product design to help users learn Machine Learning more efficiently and to implement Machine Learning in the real world. Pianalytix also leverages the power of cutting edge Artificial Intelligence to empower businesses to make massive profits by optimizing processes, maximizing efficiency and increasing profitability.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 412
    • duration 70:42:33
    • Release Date 2023/01/09